Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Epilepsia ; 62(8): 1807-1819, 2021 08.
Article in English | MEDLINE | ID: mdl-34268728

ABSTRACT

OBJECTIVE: Tracking seizures is crucial for epilepsy monitoring and treatment evaluation. Current epilepsy care relies on caretaker seizure diaries, but clinical seizure monitoring may miss seizures. Wearable devices may be better tolerated and more suitable for long-term ambulatory monitoring. This study evaluates the seizure detection performance of custom-developed machine learning (ML) algorithms across a broad spectrum of epileptic seizures utilizing wrist- and ankle-worn multisignal biosensors. METHODS: We enrolled patients admitted to the epilepsy monitoring unit and asked them to wear a wearable sensor on either their wrists or ankles. The sensor recorded body temperature, electrodermal activity, accelerometry (ACC), and photoplethysmography, which provides blood volume pulse (BVP). We used electroencephalographic seizure onset and offset as determined by a board-certified epileptologist as a standard comparison. We trained and validated ML for two different algorithms: Algorithm 1, ML methods for developing seizure type-specific detection models for nine individual seizure types; and Algorithm 2, ML methods for building general seizure type-agnostic detection, lumping together all seizure types. RESULTS: We included 94 patients (57.4% female, median age = 9.9 years) and 548 epileptic seizures (11 066 h of sensor data) for a total of 930 seizures and nine seizure types. Algorithm 1 detected eight of nine seizure types better than chance (area under the receiver operating characteristic curve [AUC-ROC] = .648-.976). Algorithm 2 detected all nine seizure types better than chance (AUC-ROC = .642-.995); a fusion of ACC and BVP modalities achieved the best AUC-ROC (.752) when combining all seizure types together. SIGNIFICANCE: Automatic seizure detection using ML from multimodal wearable sensor data is feasible across a broad spectrum of epileptic seizures. Preliminary results show better than chance seizure detection. The next steps include validation of our results in larger datasets, evaluation of the detection utility tool for additional clinical seizure types, and integration of additional clinical information.


Subject(s)
Epilepsy , Seizures , Wearable Electronic Devices , Benchmarking , Child , Electroencephalography , Epilepsy/diagnosis , Female , Humans , Machine Learning , Male , Seizures/diagnosis
2.
Compr Rev Food Sci Food Saf ; 20(4): 4182-4210, 2021 07.
Article in English | MEDLINE | ID: mdl-34146459

ABSTRACT

Fish and fishery products (FFP) are highly perishable due to their high nutritional value and moisture content. The spoilage is mainly caused by microorganisms and chemical reactions, especially lipid oxidation, leading to losses in quality and market value. Microbiological and lipid deteriorations of fishery-derived products directly lower their nutritive value and pose the risk of toxicity for human health. Increasing demand for safe FFP brings about the preservation using additives from natural origins without chemical additives due to their safety and strict regulation. Antimicrobials and antioxidants from natural sources have exhibited an excellent control over the growth of microorganisms causing fish spoilage via different mechanisms. They also play a major role in retarding lipid oxidation by acting at various stages of oxidation. Antimicrobials and antioxidants from natural sources are usually regarded as safe with no detrimental effects on the quality attributes of FFP. This review provides recent literature on the different antioxidant and antimicrobial agents from natural sources, focusing on microbial and oxidative spoilage mechanisms, their inhibition system, and their applications to retard spoilage, maintain safety, and extend the shelf life of FFP. Their applications and benefits have been revisited.


Subject(s)
Anti-Infective Agents , Antioxidants , Animals , Fisheries , Fishes , Food Preservation , Humans
3.
EBioMedicine ; 66: 103275, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33745882

ABSTRACT

BACKGROUND: Assistive automatic seizure detection can empower human annotators to shorten patient monitoring data review times. We present a proof-of-concept for a seizure detection system that is sensitive, automated, patient-specific, and tunable to maximise sensitivity while minimizing human annotation times. The system uses custom data preparation methods, deep learning analytics and electroencephalography (EEG) data. METHODS: Scalp EEG data of 365 patients containing 171,745 s ictal and 2,185,864 s interictal samples obtained from clinical monitoring systems were analysed as part of a crowdsourced artificial intelligence (AI) challenge. Participants were tasked to develop an ictal/interictal classifier with high sensitivity and low false alarm rates. We built a challenge platform that prevented participants from downloading or directly accessing the data while allowing crowdsourced model development. FINDINGS: The automatic detection system achieved tunable sensitivities between 75.00% and 91.60% allowing a reduction in the amount of raw EEG data to be reviewed by a human annotator by factors between 142x, and 22x respectively. The algorithm enables instantaneous reviewer-managed optimization of the balance between sensitivity and the amount of raw EEG data to be reviewed. INTERPRETATION: This study demonstrates the utility of deep learning for patient-specific seizure detection in EEG data. Furthermore, deep learning in combination with a human reviewer can provide the basis for an assistive data labelling system lowering the time of manual review while maintaining human expert annotation performance. FUNDING: IBM employed all IBM Research authors. Temple University employed all Temple University authors. The Icahn School of Medicine at Mount Sinai employed Eren Ahsen. The corresponding authors Stefan Harrer and Gustavo Stolovitzky declare that they had full access to all the data in the study and that they had final responsibility for the decision to submit for publication.


Subject(s)
Artificial Intelligence , Brain/physiopathology , Electroencephalography , Neurologists , Seizures/diagnosis , Algorithms , Data Analysis , Deep Learning , Electroencephalography/methods , Electroencephalography/standards , Epilepsy/diagnosis , Humans , Reproducibility of Results
4.
JAMA Netw Open ; 3(3): e200265, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32119094

ABSTRACT

Importance: Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. Objective: To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. Design, Setting, and Participants: In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. Main Outcomes and Measurements: Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists' specificity with radiologists' sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists' recall assessment was developed and evaluated. Results: Overall, 144 231 screening mammograms from 85 580 US women (952 cancer positive ≤12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166 578 examinations from 68 008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists' sensitivity, lower than community-practice radiologists' specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. Conclusions and Relevance: While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine learning methods for enhancing mammography screening interpretation.


Subject(s)
Breast Neoplasms/diagnostic imaging , Deep Learning , Image Interpretation, Computer-Assisted/methods , Mammography/methods , Radiologists , Adult , Aged , Algorithms , Artificial Intelligence , Early Detection of Cancer , Female , Humans , Middle Aged , Radiology , Sensitivity and Specificity , Sweden , United States
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5089-5092, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441485

ABSTRACT

Motor imagery (MI) based Brain-Computer Interfaces (BCIs) are a viable option for giving locked-in syndrome patients independence and communicability. BCIs comprising expensive medical-grade EEG systems evaluated in carefully-controlled, artificial environments are impractical for take-home use. Previous studies evaluated low-cost systems; however, performance was suboptimal or inconclusive. Here we evaluated a low-cost EEG system, OpenBCI, in a natural environment and leveraged neurofeedback, deep learning, and wider temporal windows to improve performance. $\mu-$rhythm data collected over the sensorimotor cortex from healthy participants performing relaxation and right-handed MI tasks were used to train a multi-layer perceptron binary classifier using deep learning. We showed that our method outperforms previous OpenBCI MI-based BCIs, thereby extending the BCI capabilities of this low-cost device.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Humans , Imagery, Psychotherapy , Imagination , Neurofeedback
6.
IEEE Trans Pattern Anal Mach Intell ; 40(9): 2051-2065, 2018 09.
Article in English | MEDLINE | ID: mdl-28866483

ABSTRACT

While deep convolutional neural networks have shown a remarkable success in image classification, the problems of inter-class similarities, intra-class variances, the effective combination of multi-modal data, and the spatial variability in images of objects remain to be major challenges. To address these problems, this paper proposes a novel framework to learn a discriminative and spatially invariant classification model for object and indoor scene recognition using multi-modal RGB-D imagery. This is achieved through three postulates: 1) spatial invariance $-$ this is achieved by combining a spatial transformer network with a deep convolutional neural network to learn features which are invariant to spatial translations, rotations, and scale changes, 2) high discriminative capability $-$ this is achieved by introducing Fisher encoding within the CNN architecture to learn features which have small inter-class similarities and large intra-class compactness, and 3) multi-modal hierarchical fusion$-$ this is achieved through the regularization of semantic segmentation to a multi-modal CNN architecture, where class probabilities are estimated at different hierarchical levels (i.e., image- and pixel-levels), and fused into a Conditional Random Field (CRF)-based inference hypothesis, the optimization of which produces consistent class labels in RGB-D images. Extensive experimental evaluations on RGB-D object and scene datasets, and live video streams (acquired from Kinect) show that our framework produces superior object and scene classification results compared to the state-of-the-art methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...