Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7262, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142605

ABSTRACT

An understanding on roles of excitons and plasmons is important in excitonic solar cells and photovoltaic (PV) technologies. Here, we produce new amorphous carbon (a-C) like films on Indium Tin Oxide (ITO) generating PV cells with efficiency three order of magnitude higher than the existing biomass-derived a-C. The amorphous carbon films are prepared from the bioproduct of palmyra sap with a simple, environmentally friendly, and highly reproducible method. Using spectroscopic ellipsometry, we measure simultaneously complex dielectric function, loss function as well as reflectivity and reveal coexistence of many-body resonant excitons and correlated-plasmons occurring due to strong electronic correlations. X-ray absorption and photoemission spectroscopies show the nature of electron and hole in defining the energy of the excitons and plasmons as a function of N or B doping. Our result shows new a-C like films and the importance of the coupling of resonant excitons and correlated plasmons in determining efficiency of photovoltaic devices.

2.
Sci Rep ; 12(1): 21497, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36513694

ABSTRACT

Hydrogenated amorphous silicon (a-Si: H) has received great attention for rich fundamental physics and potentially inexpensive solar cells. Here, we observe new resonant excitons and correlated plasmons tunable via hydrogen content in a-Si: H films on Indium Tin Oxide (ITO) substrate. Spectroscopic ellipsometry supported with High Resolution-Transmission Electron Microscopy (HR-TEM) is used to probe optical properties and the density of electronic states in the various crystallinity from nano-size crystals to amorphous a-Si: H films. The observed optical and electronic structures are analyzed by the second derivative with analytic critical-point line shapes. The complex dielectric function shows good agreement with microscopic calculations for the energy shift and the broadening inter-band transitions based on the electron-hole interaction. Interestingly, we observe an unusual spectral weight transfer over a broad energy range revealing electronic correlations that cause a drastic change in the charge carrier density and determine the photovoltaic performance. Furthermore, the interplay of resonant excitons and correlated plasmons is discussed in term of a correlated plexciton. Our result shows the important role of hydrogen in determining the coupling of excitons and plasmons in a-Si: H film for photovoltaic devices.

3.
Heliyon ; 8(3): e09032, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35265765

ABSTRACT

In this study, the effect of heating temperature on the structure of graphenic-based carbon (GC) has been successfully investigated. A series of GC materials was prepared from coconut shells by a green synthesis method. The process includes heating at four temperatures (T = 400, 600, 800 and 1000 °C) followed by an exfoliation process assisted by hydrochloric acid (HCl). These materials were characterized by wide- and small-angle x-ray scattering (WAXS and SAXS), Fourier-transform infrared spectroscopy (FTIR), x-ray photoemission spectroscopy (XPS) and transmission electron microscopy (TEM). The WAXS analysis shows Braggs peaks corresponding to the reduced graphene oxide (rGO)-like phase. Investigations by FTIR and XPS methods show the presence of carbon-oxygen functional groups such as C=C (carbon with sp 2 hybridization), C-C (carbon with sp 3 hybridization), and C=O bonds. The sp 2 bonds form a 2-dimensional (2D) network in hexagonal lattice, while carbon with sp 3 bonds tends to form a 3-dimensional (3D) tetrahedral structure. The BET analysis revealed meso- and micro-pore structures in GC. Heating process reduces the specific surface area and increases pore size of GC. Moreover, increasing the heating temperature induces a decrease in radius of gyration (R g) and an increase in the formation of 2D structures in GC. The fitting results of SAXS profiles, proved by TEM and XPS, yielded the structure of GC containing the mixture of 2D and 3D structures. Thus, it is suggested that the GC has a mesostructure.

SELECTION OF CITATIONS
SEARCH DETAIL
...