Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(5): 2603-2611, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35073060

ABSTRACT

A metal-organic polyhedron (MOP) with four paramagnetic Fe(III) centers was studied as a magnetic resonance imaging (MRI) probe. The MOP was characterized in solution by using electron paramagnetic resonance (EPR), UV-visible (UV-vis) spectroscopies, Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry, and in the solid state with single-crystal X-ray diffraction. Water proton T1 relaxation properties were examined in solution and showed significant enhancement in the presence of human serum albumin (HSA). The r1 relaxivities in the absence and presence of HSA were 8.7 mM-1 s-1 and 21 mM-1 s-1, respectively, per molecule (2.2 mM-1 s-1 and 5.3 mM-1 s-1 per Fe) at 4.7 T, 37 °C. In vivo studies of the iron MOP show strong contrast enhancement of the blood pool even at a low dose of 0.025 mmol/kg with prolonged residence in vasculature and clearance through the intestinal tract of mice. The MOP binds strongly to serum albumin and shows comparable accumulation in a murine tumor model as compared to a covalently linked Gd-HSA contrast agent.


Subject(s)
Contrast Media
2.
Inorg Chem ; 60(12): 8651-8664, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34110140

ABSTRACT

Four high-spin Fe(III) macrocyclic complexes, including three dinuclear and one mononuclear complex, were prepared toward the development of more effective iron-based magnetic resonance imaging (MRI) contrast agents. All four complexes contain a 1,4,7-triazacyclononane macrocyclic backbone with two hydroxypropyl pendant groups, an ancillary aryl or biphenyl group, and a coordination site for a water ligand. The pH potentiometric titrations support one or two deprotonations of the complexes, most likely deprotonation of hydroxypropyl groups at near-neutral pH. Variable-temperature 17O NMR studies suggest that the inner-sphere water ligand is slow to exchange with bulk water on the NMR time scale. Water proton T1 relaxation times measured for solutions of the Fe(III) complexes at pH 7.2 showed that the dinuclear complexes have a 2- to 3-fold increase in r1 relaxivity in comparison to the mononuclear complex per molecule at field strengths ranging from 1.4 T to 9.4 T. The most effective agent, a dinuclear complex with macrocycles linked through para-substitution of an aryl group (Fe2(PARA)), has an r1 of 6.7 mM-1 s-1 at 37 °C and 4.7 T or 3.3 mM-1 s-1 per iron center in the presence of serum albumin and shows enhanced blood pool and kidney contrast in mice MRI studies.


Subject(s)
Contrast Media/chemistry , Coordination Complexes/chemistry , Ferric Compounds/chemistry , Macrocyclic Compounds/chemistry , Magnetic Resonance Imaging , Animals , Contrast Media/chemical synthesis , Contrast Media/pharmacokinetics , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacokinetics , Ferric Compounds/pharmacokinetics , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacokinetics , Mice , Mice, Inbred BALB C , Molecular Structure , Serum Albumin, Human/chemistry
3.
ACS Appl Bio Mater ; 4(11): 7951-7960, 2021 11 15.
Article in English | MEDLINE | ID: mdl-35006776

ABSTRACT

Paramagnetic liposomes containing Fe(III) complexes were prepared by incorporation of mononuclear (Fe(L1) or Fe(L3)) or dinuclear (Fe2(L2)) coordination complexes of 1,4,7-triazacyclononane macrocycles containing 2-hydroxypropyl pendant groups. Two different types of paramagnetic liposomes were prepared. The first type, LipoA, has the mononuclear Fe(L1) complex loaded into the internal aqueous core. The second type, LipoB, has the amphiphilic Fe(L3) complex inserted into the liposomal bilayer and the internal aqueous core loaded with either Fe(L1) (LipoB1) or Fe2(L2) (LipoB2). LipoA enhances both T1 and T2 water proton relaxation rates. Treatment of LipoA with osmotic gradients to produce a nonspherical liposome produces a liposome with a chemical exchange saturation transfer effect as shown by an asymmetry analysis but only at high osmolarity. LipoB1, which contains an amphiphilic complex in the liposomal bilayer, produced a broadened Z-spectrum upon treatment of the liposome with osmotic gradients. The r1 relaxivity of LipoB1 and LipoB2 were higher than the r1 relaxivity of LipoA on a per Fe basis, suggesting an important contribution from the amphiphilic Fe(III) center. The r1 relaxivities of paramagnetic liposomes are relatively constant over a range of magnetic field strengths (1.4-9.4 T), with the ratio of r2/r1 substantially increasing at high field strengths. MRI studies of LipoB1 in mice showed prolonged contrast enhancement in blood compared to the clinically employed Gd(DOTA), which was injected at a 2-fold higher dose per metal than the Fe(III)-loaded liposomes.


Subject(s)
Coordination Complexes , Liposomes , Animals , Contrast Media/chemistry , Coordination Complexes/chemistry , Ferric Compounds/chemistry , Magnetic Resonance Imaging , Mice , Water/chemistry
4.
Molecules ; 25(10)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414058

ABSTRACT

Complexes of Fe(III) that contain a triazacyclononane (TACN) macrocycle, two pendant hydroxyl groups, and a third ancillary pendant show promise as MRI contrast agents. The ancillary group plays an important role in tuning the solution relaxivity of the Fe(III) complex and leads to large changes in MRI contrast enhancement in mice. Two new Fe(III) complexes, one with a third coordinating hydroxypropyl pendant, Fe(L2), and one with an anionic non-coordinating sulfonate group, Fe(L1)(OH2), are compared. Both complexes have a deprotonated hydroxyl group at neutral pH and electrode potentials representative of a stabilized trivalent iron center. The r1 relaxivity of the Fe(L1)(OH2) complex is double that of the saturated complex, Fe(L2), at 4.7 T, 37 °C in buffered solutions. However, variable-temperature 17O-NMR experiments show that the inner-sphere water of Fe(L1)(OH2) does not exchange rapidly with bulk water under these conditions. The pendant sulfonate group in Fe(L1)(OH2) confers high solubility to the complex in comparison to Fe(L2) or previously studied analogues with benzyl groups. Dynamic MRI studies of the two complexes showed major differences in their pharmacokinetics clearance rates compared to an analogue containing a benzyl ancillary group. Rapid blood clearance and poor binding to serum albumin identify Fe(L1)(OH2) for development as an extracellular fluid contrast agent.


Subject(s)
Contrast Media , Ferric Compounds , Macrocyclic Compounds , Magnetic Resonance Imaging , Animals , Contrast Media/chemistry , Contrast Media/pharmacokinetics , Contrast Media/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacokinetics , Ferric Compounds/pharmacology , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacokinetics , Macrocyclic Compounds/pharmacology , Mice , Mice, Inbred BALB C
5.
Angew Chem Int Ed Engl ; 59(29): 12093-12097, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32330368

ABSTRACT

Three paramagnetic CoII macrocyclic complexes containing 2-hydroxypropyl pendant groups, 1,1',1'',1'''-(1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl)tetrakis- (propan-2-ol) ([Co(L1)]2+ , 1,1'-(4,11-dibenzyl-1,4,8,11-tetraazacyclotetradecane-1,8-diyl)bis(propan-2-ol) ([Co(L2)]2+ ), and 1,1'-(4,11-dibenzyl-1,4,8,11-tetraazacyclotetradecane-1,8-diyl)bis(octadecan-2-ol) ([Co(L3)]2+ ) were synthesized to prepare transition metal liposomal chemical exchange saturation transfer (lipoCEST) agents. In solution, ([Co(L1)]2+ ) forms two isomers as shown by 1 H NMR spectroscopy. X-ray crystallographic studies show one isomer with 1,8-pendants in cis-configuration and a second isomer with 1,4-pendants in trans-configuration. The [Co(L2)]2+ complex has 1,8-pendants in a cis-configuration. Remarkably, the paramagnetic-induced shift of water 1 H NMR resonances in the presence of the [Co(L1)]2+ complex is as large as that observed for one of the most effective LnIII water proton shift agents. Incorporation of [Co(L1)]2+ into the liposome aqueous core, followed by dialysis against a solution of 300 mOsm L-1 produces a CEST peak at 3.5 ppm. Incorporation of the amphiphilic [Co(L3)]2+ complex into the liposome bilayer produces a more highly shifted CEST peak at -13 ppm. Taken together, these data demonstrate the feasibility of preparing CoII lipoCEST agents.

6.
ChemMedChem ; 15(12): 1050-1057, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32168421

ABSTRACT

Yeast-derived ß-glucan particles (GPs) are a class of microcarriers under development for the delivery of drugs and imaging agents to immune-system cells for theranostic approaches. However, the encapsulation of hydrophilic imaging agents in the porous GPs is challenging. Here, we show that the unique coordination chemistry of FeIII -based macrocyclic T1 MRI contrast agents permits facile encapsulation in GPs. Remarkably, GPs labeled with the simple FeIII complexes are stable under physiologically relevant conditions, despite the absence of amphiphilic groups. In contrast to the free FeIII coordination complex, the labeled FeIII -GPs have lowered T1 relaxivity and act as a silenced form of the contrast agent. Addition of a fluorescent tag to the FeIII complex produces a bimodal agent to further enable tracking of the nanoparticles and to monitor release. Treatment of the iron-labeled GPs with a maltol chelator or with mildly acidic conditions releases the intact iron complex and restores enhanced T1 relaxation of the water protons.


Subject(s)
Contrast Media/chemistry , Coordination Complexes/chemistry , Drug Carriers/chemistry , Glucans/chemistry , Iron/chemistry , Chelating Agents/chemistry , Dansyl Compounds/chemistry , Fluorescent Dyes/chemistry , Magnetic Resonance Imaging , Microscopy, Confocal , Microscopy, Fluorescence , Pyrones/chemistry , Rhodamines/chemistry , Saccharomyces cerevisiae/chemistry
7.
Angew Chem Int Ed Engl ; 59(6): 2414-2419, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31725934

ABSTRACT

Early studies suggested that FeIII complexes cannot compete with GdIII complexes as T1 MRI contrast agents. Now it is shown that one member of a class of high-spin macrocyclic FeIII complexes produces more intense contrast in mice kidneys and liver at 30 minutes post-injection than does a commercially used GdIII agent and also produces similar T1 relaxivity in serum phantoms at 4.7 T and 37 °C. Comparison of four different FeIII macrocyclic complexes elucidates the factors that contribute to relaxivity in vivo including solution speciation. Variable-temperature 17 O NMR studies suggest that none of the complexes has a single, integral inner-sphere water that exchanges rapidly on the NMR timescale. MRI studies in mice show large in vivo differences of three of the FeIII complexes that correspond, in part, to their r1 relaxivity in phantoms. Changes in overall charge of the complex modulate contrast enhancement, especially of the kidneys.


Subject(s)
Contrast Media/chemistry , Coordination Complexes/chemistry , Ferric Compounds/chemistry , Magnetic Resonance Imaging/methods , Animals , Hydrogen-Ion Concentration , Kidney/diagnostic imaging , Liver/diagnostic imaging , Mice , Mice, Inbred BALB C , Molecular Conformation
8.
J Inorg Biochem ; 201: 110832, 2019 12.
Article in English | MEDLINE | ID: mdl-31522137

ABSTRACT

Labeling of cells with paramagnetic metal complexes produces changes in MRI properties that have applications in cell tracking and identification. Here we show that fungi, specifically the budding yeast Saccharomyces cerevisiae, can be loaded with Fe(III) T1 contrast agents. Two Fe(III) macrocyclic complexes based on 1,4,7-triazacyclononane, with two pendant alcohol groups are prepared and studied as T1 relaxation MRI probes. To better visualize uptake and localization in the yeast cells, Fe(III) complexes have a fluorescent tag, consisting of either carbostyril or fluoromethyl coumarin. The Fe(III) complexes are robust towards dissociation and produce moderate T1 effects, despite lacking inner-sphere water ligands. Fluorescence microscopy and MRI T1 relaxation studies provide evidence of uptake of an Fe(III) complex into Saccharomyces cerevisiae upon electroporation.


Subject(s)
Contrast Media/chemistry , Iron/chemistry , Magnetic Resonance Imaging/methods , Coumarins/chemistry , Fluorescent Dyes/chemistry , Heterocyclic Compounds/chemistry , Microscopy, Fluorescence/methods , Protons , Saccharomyces cerevisiae
9.
Colloids Surf B Biointerfaces ; 133: 198-207, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26101820

ABSTRACT

Small hybrid nanoparticles composed of highly biocompatible Ag2S quantum dots (QD) emitting in the near-infrared region and superparamagnetic iron oxide (SPION) are produced in a simple extraction method utilizing ligand exchange mechanism. Hybrid nanoparticles luminesce at the same wavelength as the parent QD, therefore an array of hybrid nanoparticles with emission between 840 and 912nm were easily produced. Such hybrid structures have (1) strong luminescence in the medical imaging window eliminating the autofluoresence of cells as effective optical probes, (2) strong magnetic response for magnetic targeting and (3) good cyto/hemocompatibility. An interesting size dependent cytotoxicity behavior was observed in HeLa and NIH/3T3 cell lines: smallest particles are internalized significantly more by both of the cell lines, yet showed almost no significant cytotoxicity in HeLa between 10 and 25µg/mL Ag concentration but were most toxic in NIH/3T3 cells. Cell internalization and hence the cytotoxicity enhanced when cells were incubated with the hybrid nanoparticles under magnetic field, especially with the hybrid nanoparticles containing larger amounts of SPION in the hybrid composition. These results prove them as effective optical imaging agents and magnetic delivery vehicles. Combined with the known advantages of SPIONs as a contrast agent in MRI, these particles are a step forward for new theranostics for multimode imaging and magnetic targeting.


Subject(s)
Biocompatible Materials/chemistry , Magnetics , Metal Nanoparticles/therapeutic use , Theranostic Nanomedicine , Animals , HeLa Cells , Humans , Luminescence , Mice , NIH 3T3 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...