Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(4): 2636-2665, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28071778

ABSTRACT

Lignocellulosic biomass has gained extensive research interest due to its potential as a renewable resource, which has the ability to overtake oil-based resources. However, this is only possible if the fractionation of lignocellulosic biomass into its constituents, cellulose, lignin and hemicellulose, can be conducted more efficiently than is possible with the current processes. This article summarizes the currently most commonly used processes and reviews the fractionation with innovative solvents, such as ionic liquids and deep eutectic solvents. In addition, future challenges for the use of these innovative solvents will be addressed.

2.
Carbohydr Polym ; 151: 988-995, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27474646

ABSTRACT

Nowadays one of the growing trends is to replace oil-based products with cellulose-based materials. Currently most cellulose esters require a huge excess of chemicals and have therefore, not been broadly used in the industry. Here, we show that decreasing the molar mass of cellulose by ozone hydrolysis provides cellulose functionalization with less chemical consumption. To reveal the differences in reactivity and chemical consumption, we showed esterification of both native cellulose and ozone treated hydrolyzed cellulose. Based on the results, the molar mass of the starting cellulose has a significant effect on the end product's degree of substitution and properties. Furthermore, molar mass controlled palmitate esters form mechanically strong, flexible and optically transparent films with excellent water barrier properties. We anticipate that molar mass controlled cellulose will provide a starting point for the greater use of cellulose based materials, in various application, such as films and composites.


Subject(s)
Cellulose/chemistry , Esters/chemistry , Palmitates/chemistry , Esterification , Hydrolysis , Mechanical Phenomena , Molecular Weight , Ozone/chemistry , Temperature
3.
Carbohydr Polym ; 136: 402-8, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26572370

ABSTRACT

Ionic liquid extraction of wood pulp has been highlighted as a highly potential new process for dissolving pulp production. Coproduction with a polymeric hemicellulose fraction was demonstrated in bench scale from softwood kraft pulp using extraction with the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIM OAc) and water. In total, the recovered pulp and hemicellulose fraction together yielded 95.5 wt.% of the pulp input. The extracted pulp had a remarkably high purity with an R18-value of 97.8%. The hemicellulose fraction consisted of galactoglucomannan, arabinoxylan and some cellulose and was precipitated from the ionic liquid-water mixture. After hydroxypropylation of the hemicellulose fraction, films were prepared and barrier and strength properties were compared to films from other polysaccharides. Reduced oxygen and water vapor permeation and good strength properties were demonstrated when compared to corresponding films from hydroxypropylated xylan from cold caustic extraction. The films have potential for applications in food packaging and edible films.

SELECTION OF CITATIONS
SEARCH DETAIL
...