Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 735
Filter
1.
Cureus ; 16(3): e55864, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38595880

ABSTRACT

Meniere's disease is defined by the presence of three essential symptoms: episodic vertigo, tinnitus, and sensorineural hearing loss. The mainstay of its management constitutes lifestyle modification and medical and surgical therapies. Cupping therapy is an ancient treatment that is still widely used especially in the Middle East, Africa, and the United Kingdom. This study portraits the case of a 54-year-old patient suffering from long-standing Meniere's disease. The patient was treated with the routine treatment that was to no avail. It was decided that the patient undergoes cupping therapy. Over two years of monthly cupping therapy sessions, the patient reported a decrease in intensity and frequency of symptoms until its disappearance. Cupping therapy has shown a positive outcome on the patient. According to our search, there is a previous case report published in 2020 that shares multiple similarities with our case. Further studies on cupping therapy and its efficacy, mechanism of action, and complications on a larger scale are advised.

2.
Heliyon ; 10(7): e27303, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38571584

ABSTRACT

Five 2-phenylacetohydrazide derivatives (BPAH = N'-benzylidene-2-phenylacetohydrazide, HBPAH = N'-(2-hydroxybenzylidene)-2-phenylacetohydrazide), PPAH = 2-phenyl-N'-3-phenylallylideneacetohydrazide, FMPAH = N'-(furan-2-ylmethylene)-2-phenylaceto hydrazide and EPAH = N'-ethylidene-2-phenylacetohydrazide were synthesized by the condensation of 2-phenylacetohydrazide with the corresponding aldehyde. The synthesized compounds were characterized by FTIR, 1D, and 2D NMR spectroscopy. The structure of the BPAH and PPAH were analyzed by single crystal X-ray diffraction analysis and in both crystallized compounds, the molecules adopted trans geometry around the -C[bond, double bond]N- (imine) functional group. To explore the pharmacological significance of these compounds, the binding ability of these compounds with Bovine Serum Albumin (BSA) was investigated using fluorescence spectroscopy. BPAH and PPAH showed the highest binding ability while EPAH, HBPAH, and FMPAH had lower binding ability to BSA molecules. Thermodynamic parameters ΔG, ΔH°, and ΔS° demonstrated that interactions of BSA with compounds BPAH, EPAH, FMAH, and HBPAH were exothermic while for PPAH it was endothermic. The negative enthalpy and entropy of the compounds BPAH, EPAH, FMAH, and HBPAH indicated that van der Waals' forces and hydrogen bonding played a major role in stabilizing the BSA binding with the molecules. Hydrophobic interactions were predominant in the binding of PPAH with BSA tends to interact with two sets of BSA binding sites with an increase in temperature.

3.
Angew Chem Int Ed Engl ; 63(18): e202320152, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38437457

ABSTRACT

Dopant-free hole transporting materials (HTMs) is significant to the stability of perovskite solar cells (PSCs). Here, we developed a novel star-shape arylamine HTM, termed Py-DB, with a pyrene core and carbon-carbon double bonds as the bridge units. Compared to the reference HTM (termed Py-C), the extension of the planar conjugation backbone endows Py-DB with typical intermolecular π-π stacking interactions and excellent solubility, resulting in improved hole mobility and film morphology. In addition, the lower HOMO energy level of the Py-DB HTM provides efficient hole extraction with reduced energy loss at the perovskite/HTM interface. Consequently, an impressive power conversion efficiency (PCE) of 24.33 % was achieved for dopant-free Py-DB-based PSCs, which is the highest PCE for dopant-free small molecular HTMs in n-i-p configured PSCs. The dopant-free Py-DB-based device also exhibits improved long-term stability, retaining over 90 % of its initial efficiency after 1000 h exposure to 25 % humidity at 60 °C. These findings provide valuable insights and approaches for the further development of dopant-free HTMs for efficient and reliable PSCs.

4.
Chemosphere ; 355: 141743, 2024 May.
Article in English | MEDLINE | ID: mdl-38513958

ABSTRACT

Silver oxide doped iron oxide (Ag2O-Fe2O3) nanocatalyst was prepared and coated on cotton cloth (CC) as well as wrapped in sodium alginate (Alg) hydrogel. Ag2O-Fe2O3 coated CC (Ag2O-Fe2O3/CC) and Ag2O-Fe2O3 wrapped Alg (Ag2O-Fe2O3/Alg) were utilized as catalysts in reduction reaction of 4-nitrophenol (4-NP), congo red (CR), methylene blue (MB) and potassium ferricyanide (K3[Fe(CN)6]). Ag2O-Fe2O3/CC and Ag2O-Fe2O3/Alg were found to be effective and selective catalyst for the reaction of K3[Fe(CN)6]. Further amount of catalyst, K3[Fe(CN)6] quantity, amount of NaBH4, stability of catalyst and recyclability were optimized for the reaction of K3[Fe(CN)6] reduction. Ag2O-Fe2O3/Alg and Ag2O-Fe2O3/CC were appeared to be the stable catalysts by maintaining high activity during recyclability tests showing highest reaction rate constants (kapp) of 0.3472 and 0.5629 min-1, correspondingly. However, Ag2O-Fe2O3/CC can be easily recovered as compared to Ag2O-Fe2O3/Alg by simply removing from the reaction which is the main advantage of Ag2O-Fe2O3/CC. Moreover, Ag2O-Fe2O3/Alg and Ag2O-Fe2O3/CC were also examined in real samples and found useful for K3[Fe(CN)6] reduction involving real samples. The Ag2O-Fe2O3/CC nanocatalyst is a cost and time saving material for economical reduction of K3[Fe(CN)6] and environmental safety.


Subject(s)
Alginates , Ferric Compounds , Ferricyanides , Nanocomposites , Oxides , Silver Compounds
5.
Food Chem ; 445: 138792, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38387321

ABSTRACT

Melamine, a typical nitrogen enriched organic compound exhibiting great potential in the industrial sector, is exploited as an adulterant to inflate protein levels in dairy products, can pose serious threats to humans and therefore necessitates its swift detection and precise quantification at its first exposure. In this investigation, sensitive and reliable sensor probes were fabricated using CuO nanoparticles and its nanocomposites (NCs) with carbon nanotubes (CNTs), carbon black (CB), and graphene oxide (GO) to promptly quantify melamine in dairy products. The optical, morphological, and structural characteristics of the CuO-CNT NCs were achieved using diverse instrumental techniques including UV-visible spectroscopy, transmission electron microscopy, X- ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy and etc. The fabrication of glassy carbon electrodes (GCE) was accomplished by coating CuO-CNT NCs through a binder (5 % nafion). These sensor probes demonstrated outstanding electrochemical sensor performance with CuO-CNT NCs/Nafion/GCE sensor probe in terms of very low limit of detection (0.27 nM), good linearity range (0.05-0.5 nM), and relatively high sensitivity (93.924 µA µM-1 m-2) for melamine under optimized experimental conditions. Furthermore, the performance of CuO-CNT NCs/Nafion/GCE coated sensor probes was practically validated for the selective melamine detection in the real sample analysis of commercially available milk brands, which revealed significant figures of merit in a very short response time of 10 s. From the results, it was concluded that the current study might be helpful in the development of an efficient commercial sensor based on ultra-sensitive transition metal oxides in the field of health care monitoring, food stuffs in a broader scale as well as food applications.


Subject(s)
Fluorocarbon Polymers , Nanocomposites , Nanotubes, Carbon , Triazines , Humans , Animals , Nanotubes, Carbon/chemistry , Oxides/chemistry , Milk , Nanocomposites/chemistry , Electrochemical Techniques/methods , Electrodes
6.
RSC Adv ; 14(9): 5797-5811, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362067

ABSTRACT

In this study, poly(luminol-co-1,8-diaminonaphthalene) (PLim-DAN) was synthesized and subsequently modified with MWCNTs and CeO2 NPs. The synthesized nanocomposites were analyzed using IR, SEM, TEM, and XRD. Furthermore, a comprehensive set of thermal behavior measurements were taken using TGA/DTG analysis. Next, the electroactivity of the developed nanocomposites was tested as an electrochemical sensor to measure the concentration of Cr3+ ions in phosphate buffers. The GCE adapted with the PLim-DAN/CeO2/CNTs-10% nanocomposite (NC) exhibited the highest current response among the other compositions and copolymers. The fabricated nanocomposite sensor showed high sensitivity, with a value of 19.78 µA µM-1 cm-2, and a low detection limit of 4.80 ± 0.24 pM. The analytical performance was evaluated by plotting a current calibration curve versus the concentration of Cr3+ ions. It was found to be linear (R2 = 0.9908) over the range of 0.1 nM to 0.1 mM, identified as the linear dynamic range (LDR). This electrochemical sensor demonstrated that it could be a useful tool for environmental monitoring by accurately detecting and measuring carcinogenic Cr3+ ions in real-world samples.

7.
J Environ Manage ; 353: 120206, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38325287

ABSTRACT

Wastewater irrigation for vegetable cultivation is greatly concerned about the presence of toxic metals in irrigated soil and vegetables which causes possible threats to human health. This study aimed to ascertain the accumulation of heavy metals (HMs) in edible parts of vegetables irrigated with different stages of textile dyeing wastewater (TDW). Bio-concentration factor (BCF), Estimated daily intake (EDI), and target hazard quotient (THQ) were computed to estimate human health risks and speculate the hazard index (HI) of adults and children with the consumption of HMs contaminated vegetables at recommended doses. Five vegetables (red amaranth, Indian spinach, cauliflower, tomato, and radish) in a pot experiment were irrigated with groundwater (T1) and seven stages of TDW (T2∼T8) following a randomized complete block design (RCBD) with three replications. Among the TDW stages, T8, T7, T4, and T5 exhibited elevated BCF, EDI, THQ, and HI due to a rising trend in the accumulation of Pb, Cd, Cr, and Ni heavy metals in the edible portion of the red amaranth, followed by radish, Indian spinach, cauliflower, and tomato. The general patterns of heavy metal (HM) accumulation, regarded as vital nutrients for plants, were detected in the following sequence: Zn > Mn/Cu > Fe. Conversely, toxic metals were found to be Cd/Cr > Ni > Pb, regardless of the type of vegetables. Principal Component Analysis (PCA) identified T8, T7, and T4 of TDW as the primary contributors to the accumulation of heavy metals in the vegetables examined. Furthermore, the analysis of the heavy metals revealed that the BCF, THQ, and HI values for all studied metals were below 1, except for Pb. This suggests that the present consumption rates of different leafy and non-leafy vegetables, whether consumed individually or together, provide a low risk in terms of heavy metal exposure. Nevertheless, the consumption of T8, T7, and T4 irrigated vegetables, specifically Indian spinach alone or in combination with red amaranth and radish, by both adults and children, at the recommended rate, was found to pose potential health risks. On the other hand, T2, T3, and T6 irrigated vegetables were deemed safe for consumption. These findings indicated that the practice of irrigating the vegetables with T8, T7, and T4 stages of TDW has resulted in a significant buildup of heavy metals in the soils and edible parts of vegetables which are posing health risks to adults and children. Hence, it is imperative to discharge the T8, T7, and T4 stages of TDW after ETP to prevent the contamination of vegetables and mitigate potential health risks.


Subject(s)
Metals, Heavy , Soil Pollutants , Solanum lycopersicum , Adult , Child , Humans , Cadmium , Environmental Monitoring , Food Contamination/analysis , Lead , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Vegetables , Wastewater
8.
Chem Asian J ; : e202301107, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419386

ABSTRACT

The development of green hydrogen generation technologies is increasingly crucial to meeting the growing energy demand for sustainable and environmentally acceptable resources. Many obstacles in the advancement of electrodes prevented water electrolysis, long thought to be an eco-friendly method of producing hydrogen gas with no carbon emissions, from coming to fruition. Because of their great electrical conductivity, maximum supporting capacity, ease of modification in valence states, durability in hard environments, and high redox characteristics, transition metal oxides (TMOs) have recently captured a lot of interest as potential cathodes and anodes. Electrochemical water splitting is the subject of this investigation, namely the role of transition metal oxides as both active and supportive sites. It has suggested various approaches for the logical development of electrode materials based on TMOs. These include adjusting the electronic state, altering the surface structure to control its resistance to air and water, improving the flow of energy and matter, and ensuring the stability of the electrocatalyst in challenging conditions. In this comprehensive review, it has been covered the latest findings in electrocatalysis of the Oxygen Evolution Reaction (OER) and Hydrogen Evaluation Reaction (HER), as well as some of the specific difficulties, opportunities, and current research prospects in this field.

9.
Chem Rec ; 24(1): e202300106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37249417

ABSTRACT

In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.

10.
Int J Biol Macromol ; 257(Pt 1): 128544, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061525

ABSTRACT

This work reports silver nanoparticles (AgNPs) supported on biopolymer carboxymethyl cellulose beads (Ag-CMC) serves as an efficient catalyst in the reduction process of p-nitrophenol (p-NP) and methyl orange (MO). For Ag-CMC synthesis, first CMC beads were prepared by crosslinking the CMC solution in aluminium nitrate solution and then the CMC beads were introduced into AgNO3 solution to adsorb Ag ions. Field emission scanning electron microscopy (FE-SEM) analysis suggests the uniform distribution of Ag nanoparticles on the CMC beads. The X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis revealed the metallic and fcc planes of AgNPs, respectively, in the Ag-CMC catalyst. The Ag-CMC catalyst exhibits remarkable reduction activity for the p-NP and MO dyes with the highest rate constant (kapp) of a chemical reaction is 0.519 and 0.697 min-1, respectively. Comparative reduction studies of Ag-CMC with CMC, Fe-CMC and Co-CMC disclosed that Ag-CMC containing AgNPs is an important factore in reducing the organic pollutants like p-NP and MO dyes. During the recyclability tests, the Ag-CMC also maintained high reduction activity, which suggests that CMC protects the AgNPs from leaching during dye reduction reactions.


Subject(s)
Metal Nanoparticles , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Carboxymethylcellulose Sodium , Biopolymers , Coloring Agents/chemistry
11.
Chem Rec ; 24(1): e202300285, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37986206

ABSTRACT

In recent years, a new class of highly crystalline advanced permeable materials covalent-organic frameworks (COFs) have garnered a great deal of attention thanks to their remarkable properties, such as their large surface area, highly ordered pores and channels, and controllable crystalline structures. The lower physical stability and electrical conductivity, however, prevent them from being widely used in applications like photocatalytic activities and innovative energy storage and conversion devices. For this reason, many studies have focused on finding ways to improve upon these interesting materials while also minimizing their drawbacks. This review article begins with a brief introduction to the history and major milestones of COFs development before moving on to a comprehensive exploration of the various synthesis methods and recent successes and signposts of their potential applications in carbon dioxide (CO2 ) sequestration, supercapacitors (SCs), lithium-ion batteries (LIBs), and hydrogen production (H2 -energy). In conclusion, the difficulties and potential of future developing with highly efficient COFs ideas for photocatalytic as well as electrochemical energy storage applications are highlighted.

12.
Environ Res ; 238(Pt 2): 117288, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37797665

ABSTRACT

Hydrogen production, catalytic organic synthesis, carbon dioxide reduction, environmental purification, and other major fields have all adopted photocatalytic technologies due to their eco-friendliness, ease of use, and reliance on sunlight as the driving force. Photocatalyst is the key component of photocatalytic technology. Thus, it is of utmost importance to produce highly efficient, stable, visible-light-responsive photocatalysts. CIS stands out among other visible-light-response photocatalysts for its advantageous combination of easy synthesis, non-toxicity, high stability, and suitable band structure. In this study, we took a brief glance at the synthesis techniques for CIS after providing a quick introduction to the fundamental semiconductor features, including the crystal and band structures of CIS. Then, we discussed the ways doping, heterojunction creation, p-n heterojunction, type-II heterojunction, and Z-scheme may be used to modify CIS's performance. Subsequently, the applications of CIS towards pollutant degradation, CO2 reduction, water splitting, and other toxic pollutants remediation are reviewed in detail. Finally, several remaining problems with CIS-based photocatalysts are highlighted, along with future potential for constructing more superior photocatalysts.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Catalysis , Light , Technology
13.
Chem Asian J ; : e202300593, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37787825

ABSTRACT

The rapid advancement of refined nanostructures and nanotechnologies offers significant potential to boost research activities in hydrogen storage. Recent innovations in hydrogen storage have centered on nanostructured materials, highlighting their effectiveness in molecular hydrogen storage, chemical storage, and as nanoconfined hydride supports. Emphasizing the importance of exploring ultra-high-surface-area nanoporous materials and metals, we advocate for their mechanical stability, rigidity, and high hydride loading capacities to enhance hydrogen storage efficiency. Despite the evident benefits of nanostructured materials in hydrogen storage, we also address the existing challenges and future research directions in this domain. Recent progress in creating intricate nanostructures has had a notable positive impact on the field of hydrogen storage, particularly in the realm of storing molecular hydrogen, where these nanostructured materials are primarily utilized.

14.
Heliyon ; 9(9): e19564, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810126

ABSTRACT

The synthesis of Polypyrrole (PPy)/TiO2/ZnO composites involved a chemical oxidative polymerization process, wherein the addition of TiO2/ZnO was varied from 1 to 10 wt%. The composites' photocatalytic capabilities, supercapacitor performance, and potential use as a nitrite sensor were thoroughly assessed, alongside investigations into their photoluminescence (PL) and morphological characteristics. The strong interaction between TiO2/ZnO and PPy was confirmed using FTIR, UV-Vis, and PL spectroscopy techniques. The composites demonstrated aggregated and spherical-shaped morphological features investigated by FESEM. Such morphological structures of the composites were distinct from the TiO2/ZnO (rod-like) and similar to PPy structure (spherical). However, such composites showed dominating spherical-shaped morphology ensuring a diameter in the range of 50-200 nm. The PPy/TiO2/ZnO composites exhibited significantly enhanced photocatalytic efficiency in methylene blue (MB) removal, achieving a range of 88-93% compared to PPy alone, which only achieved 77.2% MB removal. The Cyclic Voltammetry (CV) data exhibited a promising hybrid supercapacitor performance of the composites with a high capacitance value, good energy density, as well as an excellent power density. The fabricated supercapacitor was capable of lightened up a single red 5 mm LED for a few minutes, indicating the commendable energy storage capacity. A newly developed PPy/TiO2/ZnO composite is potentially used to develop as a sensor probe for the detection of nitrite chemicals using the linear sweep voltammetry (LSV) technique in three electrodes system in room conditions. It is found an excellent sensor results in terms of sensitivity as well as detection limit and satisfactory results when validated with the real samples. These results offer novel insights into the fabrication of PPy/TiO2/ZnO photocatalysts for addressing organic waste treatment, while also presenting promising prospects for potential applications in supercapacitors and sensors.

15.
Cureus ; 15(8): e43701, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37724225

ABSTRACT

BACKGROUND: Congenital talipes equinovarus (CTEV) is one of the common congenital disorders in pediatric orthopedic practice that affects a large group of children.It is a combination of four parts of deformity that affect either a single foot or both feet. Our aim in this study is to estimate the prevalence and incidence of CTEV and to evaluate the risk factors that lead to relapse in some children to avoid relapse in future and complex surgical interventions, as well as to improve the final outcome. MATERIALS AND METHODS: A retrospective cohort study for the cases of CTEV was conducted to estimate the prevalence of relapse in children with CTEV after management by the Ponseti method and to evaluate the risk factors that lead to recurrence. RESULT: The study includes 103 patients with CTEV, and only 22 patients had relapse. The prevalence rate of relapsed cases was 20.4%, and the incidence was 42 per thousand. The average number of casts applied was 4.05 ± 1.37. The average severity of the deformity that was measured by the Pirani score was 4.97 ± 1.21. The most common atypical presentation of CTEV was associated with developmental dysplasia of the hip (DDH), followed by myelomeningocele (MMC). CONCLUSION: The only significant factors in the study were the Pirani score and non-compliance of the brace with p < 0.05. There was not any significance in the correction of the deformity by Ponseti between idiopathic and non-idiopathic CTEV based on the number of casts and the Pirani score. The dynamic foot brace can be the solution for the high recurrence rate, yet more studies are needed in the future.

16.
Gels ; 9(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37754402

ABSTRACT

Optimized surface-type impedimetric and capacitive proximity sensors have been fabricated on paper substrates by using rubbing-in technology. The orange dye (OD) and silicone glue (SG) composite-gel films were deposited on the zig-zag gap between two aluminum electrodes fixed on a paper (dielectric) substrate. The effect of proximity of various objects (receivers) on the impedance and the capacitance of the sensors was investigated. These objects were semi-cylindrical aluminum (metallic) foil, a cylindrical plastic tube filled with water, a kopeck-shaped plastic tube filled with carbon nanotubes and a human finger. The mechanism of sensing was based on the change in impedance and/or the capacitance of the sensors with variation of proximity between the surfaces of the sensor and the object. On decreasing proximity, the impedance of the sensors increased while the capacitance decreased. The impedimetric proximity sensitivities of CNT, water, metal-based receivers and the finger were up to 60 × 103 Ω/mm, 35 × 103 Ω/mm, 44 × 103 Ω/mm and 6.2 × 103 Ω/mm, respectively, while their capacitive sensitivities were -19.0 × 10-2 pF/mm, -16.0 × 10-2 pF/mm, -16.4 × 10-2 pF/mm and -1.8 × 10-2 pF/mm. If needed for practical application, the sensors can be built in to the Wheatstone bridge, which can also increase the sensitivity of the measurement. Moreover, the sensor's materials are low cost, while the fabrication technique is easy and ecologically friendly. The sensor can also be used for demonstrative purposes in school and college laboratories.

17.
J Mol Model ; 29(8): 244, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37439878

ABSTRACT

CONTEXT: In this work, a series of heterocyclic alkenes were prepared by the reaction of 2-hydroxy-1-naphthaldehyde with various heterocyclic active methylene compounds via Knoevenagel condensation reaction using mesoporous silica, MCM 41, supported perchloric acid as an efficient green catalytic system under solvent-free conditions. A comparative study of the conventional method vs the green method was also reported with the same raw materials. 1H NMR, 13C NMR, IR, and mass spectroscopic techniques were used for the characterization of synthesized compounds. METHODS: Computational study was performed for these compounds by applying density functional theory (DFT) at M06 functional and 6-311G (d,p) basis set to interpret the electronic structures and counter check the experimental findings. The frequency analysis with aforementioned levels of DFT was performed to confirm the stability associated with optimized geometries. The true minimum for the optimized geometries for 1, 2, and 3 was achieved as indicated by the absence of negative eigenvalues in all the calculated frequencies. Additionally, natural bond orbitals (NBOs) and nonlinear optical (NLO) properties were explored utilizing the aforementioned level and basis set combination via DFT, whereas the frontier molecular orbitals (FMOs) evaluation was done at time-dependent density functional theory TDDFT at M06/6-311G(d,p). The global reactivity parameters were also calculated using the FMO data. These computation-based outcomes were found in good agreement with the experimental findings.


Subject(s)
Heterocyclic Compounds , Models, Molecular , Spectroscopy, Fourier Transform Infrared , Static Electricity , Magnetic Resonance Spectroscopy
18.
Int J Biol Macromol ; 250: 125803, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37451385

ABSTRACT

Pectin, a biological macromolecule-doped zirconium (IV) Phosphate is reported as a novel ion exchanger which has been characterized by few physico-chemical characterization techniques such as FTIR analysis, XRD, TGA/DTA, DSC, SEM study, UV-vis spectrophotometry and elemental analysis. The method of synthesis along with ion exchange characterization has also been reported including ion exchange capacity, thermal stability, concentration and elution study. Adsorption study has been explored for few alkaline earths and transition metal ions in several acidic media. Based on adsorption study, it has been found that the reported ion exchanger has shown enantioselectivity for mercury (II) ions. Hence, few binary separations have been performed on lab-made samples depicting that the material would be of great importance in water pollution control. In addition to it, antimicrobial activity of the material on some microorganisms has been studied revealing the highest antimicrobial activity towards Ecoli ESS 2231 which would be added application in terms of water purification. Moreover, the exchanger is found stable up to 200 °C by retaining 90.6 % of its capacity whereas up to 400 °C, it exhibits decrement by retaining 75.5 % of its ion exchange capability which provides a way to explore applications of the exchanger at a higher range of temperatures.

19.
RSC Adv ; 13(29): 19817-19835, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37404316

ABSTRACT

Polybenzoxazine (PBz) is an excellent and highly intriguing resin for various sophisticated uses. Benzoxazines have piqued the curiosity of academics worldwide because of their peculiar properties. Nonetheless, most benzoxazine resin manufacturing and processing methods, notably bisphenol A-based benzoxazine, rely on petroleum resources. Because of the environmental consequences, bio-based benzoxazines are being researched as alternatives to petroleum-based benzoxazines. As a result of the environmental implications, bio-based benzoxazines are being developed to replace petroleum-based benzoxazines, and they are gaining traction. Bio-based polybenzoxazine, epoxy, and polysiloxane-based resins have piqued the interest of researchers in coatings, adhesives, and flame-retardant thermosets in recent years due to their anticorrosion, ecologically friendly, affordable, and low water absorption properties. As a result, numerous scientific studies and patents on polybenzoxazine continues to rise in polymer research. Based on its mechanical, thermal, and chemical characteristics, bio-based polybenzoxazine has several applications, including coatings (anticorrosion and antifouling), adhesives (highly crosslinked network, outstanding mechanical and thermal capabilities), and flame retardants (with the high charring capability). This review reports an overview of polybenzoxazine, highlighting the current advances and progress in synthesizing bio-based polybenzoxazine, their properties, and their use in coating applications.

20.
Polymers (Basel) ; 15(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37376337

ABSTRACT

Polymeric rubber and organic semiconductor H2Pc-CNT-composite-based surface- and sandwich-type shockproof deformable infrared radiation (IR) sensors were fabricated using a rubbing-in technique. CNT and CNT-H2Pc (30:70 wt.%) composite layers were deposited on a polymeric rubber substrate as electrodes and active layers, respectively. Under the effect of IR irradiation (0 to 3700 W/m2), the resistance and the impedance of the surface-type sensors decreased up to 1.49 and 1.36 times, respectively. In the same conditions, the resistance and the impedance of the sandwich-type sensors decreased up to 1.46 and 1.35 times, respectively. The temperature coefficients of resistance (TCR) of the surface- and sandwich-type sensors are 1.2 and 1.1, respectively. The novel ratio of the H2Pc-CNT composite ingredients and comparably high value of the TCR make the devices attractive for bolometric applications meant to measure the intensity of infrared radiation. Moreover, given their easy fabrication and low-cost materials, the fabricated devices have great potential for commercialization.

SELECTION OF CITATIONS
SEARCH DETAIL
...