Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Molecules ; 26(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567661

ABSTRACT

The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from Ipomoea obscura (L.) Ker Gawl. aqueous leaf extract. The UV-visible spectral analysis of the ZnO-NPs showed an absorption peak at 304 nm with a bandgap energy of 3.54 eV, which are characteristics of zinc nanoparticles. Moreover, the particles were of nano-size (~24.26 nm) with 88.11% purity and were agglomerated as observed through Scanning Electron Microscopy (SEM). The phyto-fabricated ZnO-NPs offered radical scavenging activity (RSA) in a dose-dependent manner with an IC50 of 0.45 mg mL-1. In addition, the genotoxicity studies of ZnO-NPs carried out on onion root tips revealed that the particles were able to significantly inhibit the cell division at the mitotic stage with a mitotic index of 39.49%. Further, the cytotoxic studies on HT-29 cells showed that the phyto-fabricated ZnO-NPs could arrest the cell division as early as in the G0/G1 phase (with 92.14%) with 73.14% cells showing early apoptotic symptoms after 24 h of incubation. The results of the study affirm the ability of phyto-fabricated ZnO-NPs from aqueous leaf extract of I. obscura is beneficial in the cytotoxic application.


Subject(s)
Ipomoea/metabolism , Nanoparticles/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Biphenyl Compounds/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/metabolism , Free Radical Scavengers/pharmacology , Free Radical Scavengers/toxicity , Green Chemistry Technology , HT29 Cells , Humans , Mutagenicity Tests , Onions/drug effects , Onions/genetics , Picrates/chemistry , Zinc Oxide/metabolism , Zinc Oxide/toxicity
2.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572296

ABSTRACT

The current study demonstrates the synthesis of fatty acids (FAs) capped silver nanoparticles (AgNPs) using aqueous poly-herbal drug Liv52 extract (PLE) as a reducing, dispersing and stabilizing agent. The NPs were characterized by various techniques and used to investigate their potent antibacterial, antibiofilm, antifungal and anticancer activities. GC-MS analysis of PLE shows a total of 37 peaks for a variety of bio-actives compounds. Amongst them, n-hexadecanoic acid (21.95%), linoleic acid (20.45%), oleic acid (18.01%) and stearic acid (13.99%) were found predominately and most likely acted as reducing, stabilizing and encapsulation FAs in LIV-AgNPs formation. FTIR analysis of LIV-AgNPs shows some other functional bio-actives like proteins, sugars and alkenes in the soft PLE corona. The zone of inhibition was 10.0 ± 2.2-18.5 ± 1.0 mm, 10.5 ± 2.5-22.5 ± 1.5 mm and 13.7 ± 1.0-16.5 ± 1.2 against P. aeruginosa, S. aureus and C. albicans, respectively. LIV-AgNPs inhibit biofilm formation in a dose-dependent manner i.e., 54.4% ± 3.1%-10.12% ± 2.3% (S. aureus), 72.7% ± 2.2%-23.3% ± 5.2% (P. aeruginosa) and 85.4% ± 3.3%-25.6% ± 2.2% (C. albicans), and SEM analysis of treated planktonic cells and their biofilm biomass validated the fitness of LIV-AgNPs in future nanoantibiotics. In addition, as prepared FAs rich PLE capped AgNPs have also exhibited significant (p < 0.05 *) antiproliferative activity against cultured HCT-116 cells. Overall, this is a very first demonstration on employment of FAs rich PLE for the synthesis of highly dispersible, stable and uniform sized AgNPs and their antibacterial, antifungal, antibiofilm and anticancer efficacy.

3.
Int J Biol Macromol ; 171: 44-58, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33373634

ABSTRACT

Fatty acids-assisted superparamagnetic maghemite (γ-Fe2O3) NPs was biologically synthesized using extract of polyherbal drug Liv52 (L52E). The NPs were characterized by UV-vis spectroscopy, FT-IR, SEM, TEM, EDX, XRD and VSM. The major biological molecules present in L52E analysed by GC-MS were saturated fatty acids (palmitic acid 21.95%; stearic acid 13.99%; myristic acid 1.14%), monounsaturated fatty acid (oleic acid 18.43%), polyunsaturated fatty acid (linoleic acid 20.45%), and aromatic phenol (cardanol monoene 11.92%) that could imply in bio-fabrication and stabilization of γ-Fe2O3 NPs. The FT-IR spectra revealed involvement of carboxylic group of fatty acids, amide group of proteins and hydroxyl group of phenolic compounds that acts as reducing and capping agents. The synthesized NPs were used to investigate their antimicrobial, antibiofilm activity against P. aeruginosa, MRSA and C. albicans and anticancer activity on colon cancer cells (HCT-116) for biomedical applications. Further, molecular docking study was performed to explore the interaction of Fe2O3 NPs with major cell wall components i.e., peptidoglycan and mannoproteins. The docking studies revealed that Fe2O3 interacted efficiently with peptidoglycan and mannoproteins and Fe2O3 get accommodated into catalytic cleft of mannoprotein. Due to magnetic property, the biological activity of γ-Fe2O3 can be further enhanced by applying external magnetic field alone or in amalgamation with other therapeutics drugs.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Magnetic Iron Oxide Nanoparticles/chemistry , Membrane Glycoproteins/pharmacology , Peptidoglycan/pharmacology , Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Biofilms/drug effects , Biofilms/growth & development , Candida albicans/drug effects , Candida albicans/growth & development , Cell Survival/drug effects , HCT116 Cells , Humans , Linoleic Acid/chemistry , Magnetic Iron Oxide Nanoparticles/ultrastructure , Membrane Glycoproteins/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Viability/drug effects , Molecular Docking Simulation , Myristic Acid/chemistry , Oleic Acid/chemistry , Palmitic Acid/chemistry , Peptidoglycan/chemistry , Phenols/chemistry , Protein Structure, Secondary , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Stearic Acids/chemistry
4.
Mater Sci Eng C Mater Biol Appl ; 116: 111156, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32806284

ABSTRACT

The present study reports the preparation of cadmium sulfide (CdS) loaded zinc oxide (ZnO) nanostructured semiconductor material and its anti-bioactivity studies against cancerous and fungus cells. For composite preparation, two different mass ratios of CdS (10 and 20%) were loaded on ZnO (10%CdS/ZnO, 20%CdS/ZnO) using a 532 nm pulsed laser ablation in water media. The structural and morphological analyses confirmed the successful loading of nanoscaled CdS on the surface of ZnO particles, ZnO particles were largely spherical with average size ~50 nm, while CdS about 12 nm in size. The elemental and electron diffraction analyses reveal that the prepared composite, CdS/ZnO contained both CdS and ZnO, thus reaffirming the production of CdS loaded ZnO. The microscopic examination and MTT assay showed the significant impact of ZnO, CdS, and CdS loaded ZnO on human colorectal carcinoma cells (HCT-116 cells). Our results show that the prepared ZnO had better anticancer activities than individual CdS, and CdS loaded ZnO against cancerous cells. For antifungal efficacy, as-prepared nanomaterials were investigated against Candida albicans by examining minimum inhibitory/fungicidal concentration (MIC/MFC) and morphogenesis. The lowest MIC (0.5 mg/mL), and MFC values (1 mg/mL) were found for 10 and 20%CdS/ZnO. Furthermore, the morphological analyses reveal the severe damage of the cell membrane upon exposure of Candida strains to nanomaterials. The present study suggests that ZnO, CdS, and CdS loaded ZnO nanostructured materials possess potential anti-cancer and anti-fungal activities.


Subject(s)
Cadmium Compounds , Nanostructures , Zinc Oxide , Humans , Lasers , Sulfides
5.
Saudi J Biol Sci ; 27(8): 1923-1930, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32714015

ABSTRACT

Present study, report the biofabrication of zinc oxide nanoparticles from aqueous leaf extract of Melia azedarach (MaZnO-NPs) through solution combustion method and their novel application in preventing the growth of seed-borne fungal pathogens of soybean (Cladosporium cladosporioides and Fusarium oxysporum). The standard blotter method was employed to isolate fungi and was identified through molecular techniques. The characterization of MaZnO-NPs was carried out by UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). The physicochemical characterization confirmed the particles were of high purity and nano size (30-40 nm) with a hexagonal shape. The synthesized MaZnO-NPs inhibited the growth of C. cladosporioides and F. oxysporum in a dose dependent manner. Biomass, ergosterol, lipid peroxidation, intracellular reactive oxygen species and membrane integrity determination upon MaZnO-NPs treatment offered significant activities there by confirming the mechanism of action against the test pathogens. In conclusion, due to the effectiveness of MaZnO-NPs in controlling the growth of C. cladosporioides and F. oxysporum, the synthesized MaZnO-NPs provides insight towards their potential application in agriculture and food industries.

6.
Materials (Basel) ; 13(11)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492940

ABSTRACT

In the present study, well-designed nanohybrids are used to act as effective dual-function adsorbents for removing both anions and heavy metals from natural water, at the same time. In this trend, Zn-Al LDHs and graphene oxide are applied to build up building blocks to produce a series of nanohybrids. These nanohybrids were characterized by X-ray diffraction, thermal analyses, Fourier transform infrared spectroscopy, Raman spectroscopy, and scanning and transmission electron microscopy. These techniques confirmed that the prepared nanohybrids contained nanolayered structures with three-dimensional porous systems. These porous systems were identified by the nitrogen adsorption-desorption isotherms and water purification experiments. The obtained results indicated that these nanohybrids included suitable structures to act as dual function materials. The first function was achieved by removing more than 80% of both cadmium and lead from the natural water. The second function was accomplished by eliminating of 100% of hydrogen phosphate and bromide anions alongside with 80%-91% of sulfate, chloride, and fluoride anions. To conclude, these well-designed nanohybrids convert two-dimensional nanolayered structures to three-dimensional porous networks to work as dual-function materials for removing of heavy metals and different kinds of anions naturally found in the fresh tap water sample with no parameters optimization.

7.
Antibiotics (Basel) ; 9(5)2020 May 17.
Article in English | MEDLINE | ID: mdl-32429514

ABSTRACT

Synthesis of nanoparticles using the plants has several advantages over other methods due to the environmentally friendly nature of plants. Besides being environmentally friendly, the synthesis of nanoparticles using plants or parts of the plants is also cost effective. The present study focuses on the biosynthesis of zinc oxide nanoparticles (ZnO NPs) using the seed extract of Butea monsoperma and their effect on to the quorum-mediated virulence factors of multidrug-resistant clinical isolates of Pseudomonas aeruginosa at sub minimum inhibitory concentration (MIC). The synthesized ZnO NPs were characterized by different techniques, such as Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). The average size of the nanoparticles was 25 nm as analyzed by TEM. ZnO NPs at sub MIC decreased the production of virulence factors such as pyocyanin, protease and hemolysin for P. aeruginosa (p ≤ 0.05). The interaction of NPs with the P. aeruginosa cells on increasing concentration of NPs at sub MIC levels showed greater accumulation of nanoparticles inside the cells as analyzed by TEM.

8.
Biomolecules ; 10(4)2020 04 17.
Article in English | MEDLINE | ID: mdl-32316549

ABSTRACT

The present study offers an alternative method for green synthesis of the formation of two types of nanoparticles (NPs). These NPs, titanium oxide and silver NPs (TiO2 and Ag NPs, respectively), were obtained from the amalgamation of intracellular extract of a wild mushroom, Fomes fomentarius, with aqueous solutions of titanium isopropoxide and silver nitrate, respectively. F. fomentarius was identified phenotypically and by 18S ribosomal RNA gene sequencing (Gene accession no: MK635351). The biosynthesis of TiO2 and Ag NPs was studied and characterized by X-ray diffraction (XRD), diffuse reflectance UV-Visible spectroscopy (DR-UV), fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Success was achieved in obtaining NPs of differing sizes and shapes. The antibacterial and anticancer activity of the NPs was significant with morphological damage being caused by both, although Ag NPs (10-20 nm) were found to have profound effects on bacterial and cancer cells in comparison to TiO2 NPs (100-120 nm). These metal NPs, synthesized using wild mushrooms, hold a great potential in biomedicinedue to an effective enzyme combination, which permits them to modify different chemical compounds to less toxic forms, which is required for ecofriendly and safe biomaterials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Coriolaceae/chemistry , Metal Nanoparticles/chemistry , Silver/pharmacology , Titanium/pharmacology , Biodegradation, Environmental , Cell Survival/drug effects , Coriolaceae/genetics , Escherichia coli/drug effects , Genotype , HCT116 Cells , Humans , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Phenotype , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spores, Fungal/cytology , Spores, Fungal/drug effects , Staphylococcus aureus/drug effects , X-Ray Diffraction
9.
Antibiotics (Basel) ; 9(3)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120845

ABSTRACT

Abstract: Plant-based synthesis of eco-friendly nanoparticles has widespread applications in many fields, including medicine. Biofilm-a shield for pathogenic microorganisms-once formed, is difficult to destroy with antibiotics, making the pathogen resistant. Here, we synthesized gold nanoparticles (AuNPs) using the stem of an Ayurvedic medicinal plant, Tinospora cordifolia, and studied the action of AuNPs against Pseudomonas aeruginosa PAO1 biofilm. The synthesized AuNPs were characterized by techniques such as ultraviolet-visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive X-ray diffraction, X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy. The AuNPs were spherically shaped with an average size of 16.1 nm. Further, the subminimum inhibitory concentrations (MICs) of AuNPs (50, 100, and 150 µg/mL) greatly affected the biofilm-forming ability of P. aeruginosa, as observed by crystal violet assay and SEM, which showed a decrease in the number of biofilm-forming cells with increasing AuNP concentration. This was further justified by confocal laser scanning microscopy (CLSM), which showed irregularities in the structure of the biofilm at the sub-MIC of AuNPs. Further, the interaction of AuNPs with PAO1 at the highest sub-MIC (150 µg/mL) showed the internalization of the nanoparticles, probably affecting the tendency of PAO1 to colonize on the surface of the nanoparticles. This study suggests that green-synthesized AuNPs can be used as effective nano-antibiotics against biofilm-related infections caused by P. aeruginosa.

10.
Biomolecules ; 10(2)2020 02 19.
Article in English | MEDLINE | ID: mdl-32092985

ABSTRACT

Cinnamomum verum plant extract mediated propellant chemistry route was used for the green synthesis of zinc oxide nanoparticles. Prepared samples were confirmed for their nano regime using advanced characterization techniques such as powder X-ray diffraction and microscopic techniques such as scanning electron microscopy and transmission electron microscopy. The energy band gap of the green synthesized zinc oxide (ZnO)-nanoparticles (NPs) were found between 3.25-3.28 eV. Fourier transmission infrared spectroscopy shows the presence of Zn-O bond within the wave number of 500 cm-1. SEM images show the specific agglomeration of particles which was also confirmed by TEM studies. The green synthesized ZnO-NPs inhibited the growth of Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 125 µg mL-1 and 62.5 µg mL-1, respectively. The results indicate the prepared ZnO-NPs can be used as a potential antimicrobial agent against harmful pathogens.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cinnamomum zeylanicum/chemistry , Nanoparticles/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Green Chemistry Technology , Humans , Nanoparticles/ultrastructure , Plant Bark/chemistry , Plant Extracts/chemistry , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Zinc Oxide/chemical synthesis
11.
Sci Rep ; 10(1): 3228, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32094420

ABSTRACT

The present work demonstrates the synthesis, characterization and biological activities of different concentrations of tin doped indium oxide nanoparticles (Sn doped In2O3 NPs), i.e., (Sn/In = 5%, 10% and 15%). We have synthesized different size (38.11 nm, 18.46 nm and 10.21 nm) of Sn doped In2O3 NPs. by using an ultra-sonication process. The Sn doped In2O3 NPs were characterized by by x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) which confirmed the successful doping of tin (Sn) with Indium oxide (In2O3). Anticandidal activity was performed by standard agar dilution method using Candida albicans for the study. The minimum inhibitory/fungicidal concentration (MIC/MFC) values recorded were, 8 & >8 mg/ml for pure In2O3 NPs, 4 & 8 mg/ml for 5%, 2 & 8 mg/ml for 10%, whereas 1 & >4 mg/ml for 15% Sn doped In2O3 NPs, respectively. The topographical alteration caused by Sn doped In2O3 NPs on Candida cells, was clearly observed by SEM examination. A significant enhancement in anticandidal activity was seen, when Candida cells were exposed to (Sn/In = 5%, 10% and 15%). Moreover, we have also evaluated the impact of Sn-In2O3 NPs on human colorectal carcinoma cells (HCT-116). The results demonstrated that Sn-In2O3 NPs (Sn/In = 5%, 10% and 15%), caused dose dependent decrease in the cancer cell viability as the low dosage (2.0 mg/mL) showed 62.11% cell viability, while 4.0, 8.0, 16.0, 32.0 mg/mL dosages showed 20.45%, 18.25%, 16.58%, and 15.58% cell viability. In addition, the treatment of Sn-In2O3 NPs also showed significant cellular and anatomical changes in cancer cells as examined by microscopes. We have also examined the impact of Sn-In2O3 NPs (5%, 10%, 15%) on normal cells (HEK-293) and the results demonstrate that Sn-In2O3 NPs did not reduce the cell viability of normal cells.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Nanoparticles/chemistry , Sonication , Tin Compounds/chemical synthesis , Biofilms/drug effects , Candida/ultrastructure , Cell Proliferation/drug effects , Cell Shape/drug effects , Crystallization , HCT116 Cells , HEK293 Cells , Humans , Hyphae/drug effects , Hyphae/growth & development , Microbial Sensitivity Tests , Nanoparticles/ultrastructure , Tin/chemistry , X-Ray Diffraction
12.
Appl Biochem Biotechnol ; 189(3): 760-773, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31119527

ABSTRACT

Conjugation of different molecules is a promising approach to enhance the drug delivery and treatment. In the present study, here, we have synthesized silica oxide (SiO2) nanoparticles conjugated with (3-Glycidyloxypropyl) trimethoxysilane (3GPS) and further reacted with 1,2,4-triazole (Tri), 3-aminotriazole (ATri), 5-aminetetrazole (Atet), imidazole (Imi). The structure, size, and morphology of nanocomposite materials were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) methods. These nanocomposite materials were tested on human colorectal carcinoma cells (HCT-116) to examine their anti-cancer capabilities by using MTT assay and morphometric analysis. Our results revealed that nanocomposite materials decreased cancer cell viability and cell proliferation and caused cell death in a concentration-dependent manner. Our findings demonstrate that SiO2-conjugated nanocomposite materials possess strong anti-cancer capabilities and hold a great potential for the colon cancer treatments.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Azoles/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Epoxy Compounds/chemistry , HCT116 Cells , Humans , Nanocomposites/chemistry , Silanes/chemistry
13.
Artif Cells Nanomed Biotechnol ; 46(sup3): S1152-S1161, 2018.
Article in English | MEDLINE | ID: mdl-30704296

ABSTRACT

In recent years, natural and synthetic polymers have attracted much attention due to their great potentials in medical science. In the present study, we have investigated the effect of chitosan-bulk (Ch-bulk), chitosan nanoparticles (ChNP), chitosan nanoparticles conjugated with glutaraldehyde (ChNP-GA) with an average size of 300-400 nm on human colorectal carcinoma cells (HCT-116) to examine their cytotoxic and anti-cancer abilities. We have evaluated the effects of Ch-bulk, ChNP, ChNP-GA on cancer cells by morphometric and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays respectively. Our results revealed that the Ch-bulk, ChNP, ChNP-GA decreased cell viability, cell proliferation and caused cell death in a concentration-dependent manner. Both morphometric and quantitative analyses confirmed that (Ch-bulk) and Chitosan nanoparticles (ChNP and ChNP-GA) induced concentration-dependent effects on the cancer cells. Among these three, ChNP-GA produced a more profound effect on the survivability with compared to each-bulk and Ch-NP treated groups. A dose of 2 mg/mL did not produced much effect on the cancer cell death, however, a dose of 4 mg/mL-6 mg/mL produced significant morphological changes like nuclear condensation and augmentation. Interestingly, a dose of 8 mg/mL produced significant cell death 48 hours post-treatment. In addition, during our morphometric analysis, we found that (Ch-bulk) and Chitosan nanoparticles (ChNP and ChNP-GA) treated cells underwent nuclear disintegration and fragmentation which lead to programmed cell death. Our studies demonstrate that the Ch-bulk, ChNP and ChNP-GA holds a great potential in the treatment of colon cancer.


Subject(s)
Antineoplastic Agents , Chitosan , Colorectal Neoplasms , Drug Carriers , Nanoparticles , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacokinetics , Chitosan/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Glutaral/chemistry , HCT116 Cells , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...