Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Oncolytics ; 29: 17-29, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37077714

ABSTRACT

Primary drug resistance and minimal residual disease are major challenges in the treatment of B cell neoplasms. Therefore, this study aimed to identify a novel treatment capable of eradicating malignant B cells and drug-resistant disease. Oncolytic viruses eradicate malignant cells by direct oncolysis and activation of anti-tumor immunity, have proven anti-cancer efficacy, and are safe and well tolerated in clinical use. Here, we demonstrate that the oncolytic virus coxsackievirus A21 can kill a range of B cell neoplasms, irrespective of an anti-viral interferon response. Moreover, CVA21 retained its capacity to kill drug-resistant B cell neoplasms, where drug resistance was induced by co-culture with tumor microenvironment support. In some cases, CVA21 efficacy was actually enhanced, in accordance with increased expression of the viral entry receptor ICAM-1. Importantly, the data confirmed preferential killing of malignant B cells and CVA21 dependence on oncogenic B cell signaling pathways. Significantly, CVA21 also activated natural killer (NK) cells to kill neoplastic B cells and drug-resistant B cells remained susceptible to NK cell-mediated lysis. Overall, these data reveal a dual mode of action of CVA21 against drug-resistant B cells and support the development of CVA21 for the treatment of B cell neoplasms.

2.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33741729

ABSTRACT

BACKGROUND: Multiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported. METHODS: This study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment. RESULTS: Using the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes. CONCLUSION: These data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority.


Subject(s)
Bone Marrow/immunology , CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , Multiple Myeloma/therapy , Oncolytic Virotherapy , Oncolytic Viruses/immunology , Reoviridae/immunology , Spleen/immunology , Tumor Microenvironment/immunology , Animals , Bone Marrow/virology , CD8-Positive T-Lymphocytes/virology , Cell Line, Tumor , Coculture Techniques , Cytokines/immunology , Cytotoxicity, Immunologic , Female , Humans , Killer Cells, Natural/virology , Male , Mice, Inbred C57BL , Multiple Myeloma/immunology , Multiple Myeloma/virology , Oncolytic Viruses/pathogenicity , Reoviridae/pathogenicity , Spleen/virology , Tumor Escape
SELECTION OF CITATIONS
SEARCH DETAIL
...