Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38005734

ABSTRACT

One of the most important effects of climatic changes is increasing temperatures and expanding water deficit stress in tropical and subtropical regions. As the fourth most important cereal crop, barley (Hordeum vulgare L.) is crucial for food and feed security, as well as for a sustainable agricultural system. The present study investigates 56 promising barley genotypes, along with four local varieties (Norooz, Oxin, Golchin, and Negin) in four locations to identify high-yielding and adapted genotypes in the warm climate of Iran. Genotypes were tested in an alpha lattice design with six blocks, which were repeated three times. Traits measured were the number of days to heading and maturity, plant height, thousand kernels weight, and grain yield. A combined analysis of variance showed the significant effects of genotypes (G), environments (E), and their interaction (GEI) on all measured traits. Application of the additive main-effect and multiplicative interaction (AMMI) model to the grain yield data showed that GEI was divided into three significant components (IPCAs), and each accounted for 50.93%, 30.60%, and 18.47%, respectively. Two selection indices [Smith-Hazel (SH) and multiple trait selection index (MTSI)] identified G18, G24, G29, and G57 as desirable genotypes at the four test locations. Using several BLUP-based indices, such as the harmonic mean of genotypic values (HMGV), the relative performance of genotypic values (RPGV), and the harmonic mean of the relative performance of genotypic values (HMRPGV), genotypes G6, G11, G22, G24, G29, G38, G52, and G57 were identified as superior genotypes. The application of GGE analysis identified G6, G24, G29, G52, and G57 as the high-yielding and most stable genotypes. Considering all statistical models, genotypes G24, G29, and G57 can be used, as they are well-adapted to the test locations in warm regions of Iran.

2.
Physiol Mol Biol Plants ; 27(11): 2533-2547, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34924709

ABSTRACT

We investigated the effects of salinity stress and gamma radiation on salinity tolerance in wheat crops. To this end, mutant lines were generated by exposing Arg and Bam wheat varieties at the primordial state to 150 and 200 gamma radiation doses in the field. The top 15 mutant lines were specified for cultivation in the fifth-generation under two conditions, including non-stress and salinity stress. According to Fernandez's model, the three mutant lines had high yields under both conditions. The three mutant lines were selected with their two parents, and then, cultivated in a completely randomized factorial design in a greenhouse under non-stress and salinity conditions. The mutant lines showed significantly higher osmotic adjustment, leaf relative water content (RWC), potassium ion concentration, soluble sugar content and lower proline (Pro), and glycine betaine (GB) content than the parents at both the vegetative (VEG) and reproductive (REP) stages under salinity conditions. The expression of genes involved in the Pro biosynthesis pathway, P5CS and P5CR genes, in mutant lines were less than their parents, and conversely, P5CDH in mutant lines was more than their parents. The changes in the expression of CMO and BADH genes involved in the GB synthesis pathway indicated that the mutant lines had less gene expression compared to their parent genotypes of Arg and Bam. The results indicated an increase in antioxidant activity in the mutant lines compared to their parents. Consequently, irradiated plants have probably adapted to the salinity stress by increasing the osmotic adjustment, RWC, potassium ion concentration, and soluble sugar content, as well as activating antioxidant enzymes.

SELECTION OF CITATIONS
SEARCH DETAIL
...