Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 2700, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792788

ABSTRACT

Silicon nanoparticles (Si-NPs) have shown their potential for use in farming under water-deficient conditions. Thus, the experiment was accomplished to explore the impacts of seed priming of Si-NPs on wheat (Triticum aestivum L.) growth and yield under different drought levels. The plants were grown in pots under natural ecological environmental conditions and were harvested on 25th of April, 2020. The results revealed that seed priming of Si-NPs (0, 300, 600, and 900 mg/L) suggestively improved, the spike length, grains per spike, 1000 grains weight, plant height, grain yield, and biological yield by 12-42%, 14-54%, 5-49%, 5-41%, 17-62%, and 21-64%, respectively, relative to the control. The Si-NPs improved the leaf gas trade ascribes and chlorophyll a and b concentrations, though decreased the oxidative pressure in leaves which was demonstrated by the diminished electrolyte leakage and upgrade in superoxide dismutase and peroxidase activities in leaf under Si-NPs remedies over the control. The outcomes proposed that Si-NPs could improve the yield of wheat under a dry spell. In this manner, the utilization of Si-NPs by seed priming technique is a practical methodology for controlling the drought stress in wheat. These findings will provide the basis for future research and helpful to improve the food security under drought and heat related challenges.


Subject(s)
Silicon , Triticum , Silicon/pharmacology , Droughts , Chlorophyll A , Antioxidants
2.
Front Nutr ; 8: 721728, 2021.
Article in English | MEDLINE | ID: mdl-34692743

ABSTRACT

Cereals and pulses are consumed as a staple food in low-income countries for the fulfillment of daily dietary requirements and as a source of micronutrients. However, they are failing to offer balanced nutrition due to deficiencies of some essential compounds, macronutrients, and micronutrients, i.e., cereals are deficient in iron, zinc, some essential amino acids, and quality proteins. Meanwhile, the pulses are rich in anti-nutrient compounds that restrict the bioavailability of micronutrients. As a result, the population is suffering from malnutrition and resultantly different diseases, i.e., anemia, beriberi, pellagra, night blindness, rickets, and scurvy are common in the society. These facts highlight the need for the biofortification of cereals and pulses for the provision of balanced diets to masses and reduction of malnutrition. Biofortification of crops may be achieved through conventional approaches or new breeding techniques (NBTs). Conventional approaches for biofortification cover mineral fertilization through foliar or soil application, microbe-mediated enhanced uptake of nutrients, and conventional crossing of plants to obtain the desired combination of genes for balanced nutrient uptake and bioavailability. Whereas, NBTs rely on gene silencing, gene editing, overexpression, and gene transfer from other species for the acquisition of balanced nutritional profiles in mutant plants. Thus, we have highlighted the significance of conventional and NBTs for the biofortification of cereals and pulses. Current and future perspectives and opportunities are also discussed. Further, the regulatory aspects of newly developed biofortified transgenic and/or non-transgenic crop varieties via NBTs are also presented.

3.
Plant Dis ; 2021 May 24.
Article in English | MEDLINE | ID: mdl-34029130

ABSTRACT

Citrus reticulata cv. 'Kinnow' mandarin is the most popular and widely grown fruit crop in Pakistan. During 2017, a survey was conducted to the local citrus fruit markets of Faisalabad, Pakistan. Citrus fruits (n=50) exhibiting stem end rot and fruit rot were collected with 15% disease incidence. The stem end region showed light to dark brown lesions and white fungal growth was also observed in the severely infected fruit. Infected fruit were excised into 2mm2 segments, surface disinfected with 1% NaClO, rinsed with sterilized water and dried. Later, these tissues were placed on potato dextrose agar (PDA) medium and subsequently incubated at 25 °C. Purified isolates produced white colonies with beige pigmentation. The frequency of fungal isolation was 47%. Microscopic observations revealed that macroconidia (n=50) had 5 to 6 septations, with a prominent dorsiventral curvature, tapered and elongated apical cell, and a foot shape basal cell. The macroconidia were measuring 22 to 45 × 2.9 to 4.3 µm with an average of 31 × 3.6 µm. However, microconidia were not observed. Chlamydospores were globose, intercalary, solitary, or in pairs, appearing in chains (Leslie and Summerell 2006). For molecular identification, DNA was extracted from all isolates. The internal transcribed spacer region (ITS) ITS1/4 (White et al. 1990), translation elongation factor-1 alpha (TEF) EF1/2 (O'Donnell et al. 1998), and RNA polymerase II subunit 1 (RPB1) (O'Donnell et al. 2013) were amplified using PCR and the product was subsequently sequenced. Based on BLAST analysis, the isolate was identified as Fusarium equiseti (FUS-21). The sequences of the representative isolate FUS-21 were deposited in the GenBank with accession numbers (ITS, MH581300), (TEF, MK203749), and (RPB1, MW596599) showing more than 99% similarity with ITS accession GQ505683, TEF accession GQ505594, and 100% to RPB1 accession JX171481. To determine the pathogenicity, 40 healthy surface disinfested citrus fruit were taken. The fruit were inoculated by creating artificial wounds on the surface with a sterilized needle and 10 µL of 105 spores/mL was deposited in the wounds. In case of control fruit were inoculated with 10 µL sterilized distilled water only, and incubated at 25 °C. All fruit inoculated with the putative pathogen, developed symptoms like the original fruit from which they were isolated. The pathogenicity test was repeated twice. Visible white mycelium appeared at the stem end region and the fruits became dried as the infection progressed. However, the control fruit remained asymptomatic. The pathogen was re-isolated from infected fruit and identified based on morphometric and molecular analysis. Previously we have reported F. oxysporum causing citrus fruit rot in Pakistan (Moosa et al. 2020). This is the first report of F. equiseti causing post-harvest rot of citrus fruits in Pakistan. Kinnow is an important fruit crop of Pakistan with huge export value the management of Fusarium rot is quite important to save the loss of fresh produce.

4.
Plant Dis ; 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32804040

ABSTRACT

Rice (Oryza sativa L.) is one of the highly consumed cereal grain crops in Pakistan. In September 2017, leaf samples of cultivar Basmati-385 showing brown to dark brown spots (5 to 9 mm in diameter) that were oval or cylindrical in shape with a chlorotic yellow halo and grayish tan centers were collected from fields near the University of Agriculture, Faisalabad (31.43633 N 73.05981 E). Average disease incidence was 69% in six rice fields that were sampled for diseased plants with visible symptoms. To isolate the pathogen, from 20 diseased leaves, 5 mm2 segments from the margins of lesions were cut, rinsed with sterile distilled water (SDW), surface disinfected by 70% ethanol and again rinsed with SDW. The samples were dried on sterilized filter paper discs, plated on potato dextrose agar (PDA) and incubated at 27°C for 5 to 7 days. Twelve isolates were sub-cultured and single-sporing was performed to obtain pure cultures. Fungal isolates with light to dark gray in color, thick or fluffy aerial mycelium, circular and smooth margins were obtained after 7 days of incubation. Conidia were 47-83 µm × 10-17 µm (n=100), with 4 to 10 distosepta, dark or olivaceous brown, straight or moderately curved, and the cells at the ends occasionally looked paler than those in the middle. Conidiophore of the fungus were simple, smooth, cylindrical, septate, and straight to flexuous. These characteristics resembled those of Bipolaris zeicola (Stout) Shoemaker (Manamgoda et al. 2014). For molecular identification, genomic DNA (isolate SU-11) was extracted and the internal transcribed spacer (ITS) region, large subunit (LSU) of ribosomal DNA, translation elongation factor (tef), glyceraldehyde 3-phosphate dehydrogenase (gpd), and RNA polymerase II second largest subunit (rpb2) genes were amplified and sequenced by using the primers ITS1-F/ITS4-R (White et al. 1990), LROR-F/LR5-R (Schoch et al. 2012), EF1-983F/EF1-2218R (Rehner and Buckley 2005), GPD1F/GPD2R (Berbee et al. 1999), and 5F2/7CR (O'Donnell et al. 2007), respectively. BLASTn searches showed 100% homology with the LSU and rpb2 sequences of B. zeicola (GenBank Accession Nos. MH876201 and HF934842) and 98-99% similarity with ITS, tef, and gpd sequences of B. zeicola (GenBank Accession Nos. KM230398, KM093752 and KM034815). The sequences of ITS, LSU, tef, gpd, and rpb2 were deposited in GenBank with accession numbers MN871712, MN877767, MN867685, MN904511 and MT349837, respectively. To fulfill Koch's postulates, 25 greenhouse-grown rice plants (cv. Basmati-385) at 2- to 3-leaf stage were spray inoculated with a spore suspension (105 spores/ml; isolate SU-11) prepared in SDW. Plants were covered with plastic wraps to maintain humid conditions for 24 hours and incubated at 27°C for one week. Similarly, ten non-inoculated plants sprayed with SDW served as controls. After one week, observed symptoms were similar to those from natural infections and no disease symptoms were observed on the non-inoculated plants. The experiment was repeated twice and the pathogen was re-isolated from the infected leaves and characterized morphologically. Globally, B. zeicola has also been reported to cause the leaf spot of rice and maize plants (Sivanesan 1987; Kang et al. 2018). To our information, this is the first report of B. zeicola causing brown leaf spot of rice in Pakistan. The increasing risk of this fungal pathogen in the rice-growing areas of Pakistan need a rigorous exploration and outreach effort to develop effective management practices.

5.
Saudi J Biol Sci ; 27(7): 1818-1823, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32565701

ABSTRACT

Drought stress constricts crop production in the world. Increasing human population and predicted temperature increase owing to global warming will lead ruthless problems for agricultural production in near future. Hence, use of high yielding genotypes having drought tolerance and scrutinize of drought sensitive local cultivars for making them tolerant may be the proficient approaches to cope its detrimental outcomes. The current study was executed during 20015-2016 and 2016-2017 in field using randomized complete block design under factorial arrangements on 50 wheat genotypes for exploring their sensitivity and tolerance against drought. Some of the attributes of grain yield and drought tolerance indices were recorded. Grain yield showed negative correlations with tolerance index (TOL), drought index (DI) and stress susceptibility index (SSI) while positive correlation with mean productivity (MP) and geometric mean productivity (GMP) under drought condition. These findings depicted that tolerant genotypes could be chosen by high MP and GMP values and low SSI and TOL values. Based on the results, genotypes GA-02, Faisalabad-83, 9444, Sehar-06, Pirsabak-04 and Kohistan-97 were more tolerant and recognized as suitable for both normal and drought conditions. Genotypes of Chenab-00, Kohsar-95, Parwaz-94 and Kohenoor-83 confirmed more sensitive due to high grain yield loss under drought stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...