Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 22(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36502224

ABSTRACT

One of the most challenging issues in the routing protocols for underwater wireless sensor networks (UWSNs) is the occurrence of void areas (communication void). That is, when void areas are present, the data packets could be trapped in a sensor node and cannot be sent further to reach the sink(s) due to the features of the UWSNs environment and/or the configuration of the network itself. Opportunistic routing (OR) is an innovative prototype in routing for UWSNs. In routing protocols employing the OR technique, the most suitable sensor node according to the criteria adopted by the protocol rules will be elected as a next-hop forwarder node to forward the data packets first. This routing method takes advantage of the broadcast nature of wireless sensor networks. OR has made a noticeable improvement in the sensor networks' performance in terms of efficiency, throughput, and reliability. Several routing protocols that utilize OR in UWSNs have been proposed to extend the lifetime of the network and maintain its connectivity by addressing void areas. In addition, a number of survey papers were presented in routing protocols with different points of approach. Our paper focuses on reviewing void avoiding OR protocols. In this paper, we briefly present the basic concept of OR and its building blocks. We also indicate the concept of the void area and list the reasons that could lead to its occurrence, as well as reviewing the state-of-the-art OR protocols proposed for this challenging area and presenting their strengths and weaknesses.


Subject(s)
Algorithms , Wireless Technology , Reproducibility of Results , Computer Communication Networks , Communication
2.
Sci Rep ; 12(1): 19534, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376412

ABSTRACT

Due to the widespread usage of Android smartphones in the present era, Android malware has become a grave security concern. The research community relies on publicly available datasets to keep pace with evolving malware. However, a plethora of apps in those datasets are mere clones of previously identified malware. The reason is that instead of creating novel versions, malware authors generally repack existing malicious applications to create malware clones with minimal effort and expense. This paper investigates three benchmark Android malware datasets to quantify repacked malware using package names-based similarity. We consider 5560 apps from the Drebin dataset, 24,533 apps from the AMD and 695,470 apps from the AndroZoo dataset for analysis. Our analysis reveals that 52.3% apps in Drebin, 29.8% apps in the AMD and 42.3% apps in the AndroZoo dataset are repacked malware. Furthermore, we present AndroMalPack, an Android malware detector trained on clones-free datasets and optimized using Nature-inspired algorithms. Although trained on a reduced version of datasets, AndroMalPack classifies novel and repacked malware with a remarkable detection accuracy of up to 98.2% and meagre false-positive rates. Finally, we publish a dataset of cloned apps in Drebin, AMD, and AndrooZoo to foster research in the repacked malware analysis domain.


Subject(s)
Algorithms , Smartphone , Data Collection
3.
Life (Basel) ; 12(8)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35892905

ABSTRACT

Physical activity plays an important role in controlling obesity and maintaining healthy living. It becomes increasingly important during a pandemic due to restrictions on outdoor activities. Tracking physical activities using miniature wearable sensors and state-of-the-art machine learning techniques can encourage healthy living and control obesity. This work focuses on introducing novel techniques to identify and log physical activities using machine learning techniques and wearable sensors. Physical activities performed in daily life are often unstructured and unplanned, and one activity or set of activities (sitting, standing) might be more frequent than others (walking, stairs up, stairs down). None of the existing activities classification systems have explored the impact of such class imbalance on the performance of machine learning classifiers. Therefore, the main aim of the study is to investigate the impact of class imbalance on the performance of machine learning classifiers and also to observe which classifier or set of classifiers is more sensitive to class imbalance than others. The study utilizes motion sensors' data of 30 participants, recorded while performing a variety of daily life activities. Different training splits are used to introduce class imbalance which reveals the performance of the selected state-of-the-art algorithms with various degrees of imbalance. The findings suggest that the class imbalance plays a significant role in the performance of the system, and the underrepresentation of physical activity during the training stage significantly impacts the performance of machine learning classifiers.

4.
Sensors (Basel) ; 21(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801951

ABSTRACT

Much attention has been focused lately on the Opportunistic Routing technique (OR) that can overcome the restrictions of the harsh underwater environment and the unique structures of the Underwater Sensor Networks (UWSNs). OR enhances the performance of the UWSNs in both packet delivery ratio and energy saving. In our work; we propose a new routing protocol; called Energy Efficient Depth-based Opportunistic Routing with Void Avoidance for UWSNs (EEDOR-VA), to address the void area problem. EEDOR-VA is a reactive OR protocol that uses a hop count discovery procedure to update the hop count of the intermediate nodes between the source and the destination to form forwarding sets. EEDOR-VA forwarding sets can be selected with less or greater depth than the packet holder (i.e., source or intermediate node). It efficiently prevents all void/trapped nodes from being part of the forwarding sets and data transmission procedure; thereby saving network resources and delivering data packets at the lowest possible cost. The results of our extensive simulation study indicate that the EEDOR-VA protocol outperforms other protocols in terms of packet delivery ratio and energy consumption.

5.
Sensors (Basel) ; 18(12)2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30558343

ABSTRACT

The introduction of medical Internet of Things (IoT) for biomedical applications has brought about the era of proactive healthcare. Such advanced medical supervision lies on the foundation of a network of energy-constrained wearable or implantable sensors (or things). These miniaturized battery-powered biosensor nodes are placed in, on, or around the human body to measure vital signals to be reported to the sink. This network configuration deployed on a human body is known as the Wireless Body Area Network (WBAN). Strategies are required to restrict energy expenditure of the nodes without degrading performance of WBAN to make medical IoT a green (energy-efficient) and effective paradigm. Direct communication from a node to sink in WBAN may often lead to rapid energy depletion of nodes as well as growing thermal effects on the human body. Hence, multi-hop communication from sources to sink in WBAN is often preferred instead of direct communication with high transmission power. Existing research focuses on designing multi-hop protocols addressing the issues in WBAN routing. However, the ideal conditions for multi-hop routing in preference to single-hop direct delivery is rarely investigated. Accordingly, in this paper an optimal transmission policy for WBAN is developed using Markov Decision Process (MDP) subject to various input conditions such as battery level, event occurrence, packet transmission rate and link quality. Thereafter, a multi-hop routing protocol is designed where routing decisions are made following a pre-computed strategy. The algorithm is simulated, and performance is compared with existing multi-hop protocol for WBAN to demonstrate the viability of the proposed scheme.


Subject(s)
Markov Chains , Wireless Technology/instrumentation , Algorithms , Computer Communication Networks , Humans , Internet
6.
IEEE Trans Neural Syst Rehabil Eng ; 26(12): 2387-2396, 2018 12.
Article in English | MEDLINE | ID: mdl-30442608

ABSTRACT

Musculoskeletal and neurological disorders are common devastating companions of ageing, leading to a reduction in quality of life and increased mortality. Gait analysis is a popular method for diagnosing these disorders. However, manually analyzing the motion data is a labor-intensive task, and the quality of the results depends on the experience of the doctors. In this paper, we propose an automatic framework for classifying musculoskeletal and neurological disorders among older people based on 3D motion data. We also propose two new features to capture the relationship between joints across frames, known as 3D Relative Joint Displacement (3DRJDP) and 6D Symmetric Relative Joint Displacement (6DSymRJDP), such that the relative movement between joints can be analyzed. To optimize the classification performance, we adapt feature selection methods to choose an optimal feature set from the raw feature input. Experimental results show that we achieve a classification accuracy of 84.29% using the proposed relative joint features, outperforming existing features that focus on the movement of individual joints. Considering the limited open motion database for gait analysis focusing on such disorders, we construct a comprehensive, openly accessible 3D full-body motion database from 45 subjects.


Subject(s)
Gait Disorders, Neurologic/diagnosis , Joints/physiopathology , Musculoskeletal Diseases/diagnosis , Nervous System Diseases/diagnosis , Aged , Aged, 80 and over , Algorithms , Biomechanical Phenomena , Female , Gait Disorders, Neurologic/classification , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Movement , Musculoskeletal Diseases/classification , Nervous System Diseases/classification , Reproducibility of Results
7.
Neural Comput Appl ; 29(11): 991-1004, 2018.
Article in English | MEDLINE | ID: mdl-29769759

ABSTRACT

In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed.

8.
Sensors (Basel) ; 17(8)2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28820451

ABSTRACT

Mobile anchor path planning techniques have provided as an alternative option for node localization in wireless sensor networks (WSNs). In such context, path planning is a movement pattern where a mobile anchor node's movement is designed in order to achieve a maximum localization ratio possible with a minimum error rate. Typically, the mobility path planning is designed in advance, which is applicable when the mobile anchor has sufficient sources of energy and time. However, when the mobility movement is restricted or limited, a dynamic path planning design is needed. This paper proposes a novel distributed range-free movement mechanism for mobility-assisted localization in WSNs when the mobile anchor's movement is limited. The designed movement is formed in real-time pattern using a fuzzy-logic approach based on the information received from the network and the nodes' deployment. Our proposed model, Fuzzy-Logic based Path Planning for mobile anchor-assisted Localization in WSNs (FLPPL), offers superior results in several metrics including both localization accuracy and localization ratio in comparison to other similar works.

9.
Comput Methods Programs Biomed ; 144: 61-75, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28495007

ABSTRACT

BACKGROUND AND OBJECTIVES: Detection of the R-peak pertaining to the QRS complex of an ECG signal plays an important role for the diagnosis of a patient's heart condition. To accurately identify the QRS locations from the acquired raw ECG signals, we need to handle a number of challenges, which include noise, baseline wander, varying peak amplitudes, and signal abnormality. This research aims to address these challenges by developing an efficient lightweight algorithm for QRS (i.e., R-peak) detection from raw ECG signals. METHODS: A lightweight real-time sliding window-based Max-Min Difference (MMD) algorithm for QRS detection from Lead II ECG signals is proposed. Targeting to achieve the best trade-off between computational efficiency and detection accuracy, the proposed algorithm consists of five key steps for QRS detection, namely, baseline correction, MMD curve generation, dynamic threshold computation, R-peak detection, and error correction. Five annotated databases from Physionet are used for evaluating the proposed algorithm in R-peak detection. Integrated with a feature extraction technique and a neural network classifier, the proposed ORS detection algorithm has also been extended to undertake normal and abnormal heartbeat detection from ECG signals. RESULTS: The proposed algorithm exhibits a high degree of robustness in QRS detection and achieves an average sensitivity of 99.62% and an average positive predictivity of 99.67%. Its performance compares favorably with those from the existing state-of-the-art models reported in the literature. In regards to normal and abnormal heartbeat detection, the proposed QRS detection algorithm in combination with the feature extraction technique and neural network classifier achieves an overall accuracy rate of 93.44% based on an empirical evaluation using the MIT-BIH Arrhythmia data set with 10-fold cross validation. CONCLUSIONS: In comparison with other related studies, the proposed algorithm offers a lightweight adaptive alternative for R-peak detection with good computational efficiency. The empirical results indicate that it not only yields a high accuracy rate in QRS detection, but also exhibits efficient computational complexity at the order of O(n), where n is the length of an ECG signal.


Subject(s)
Algorithms , Electrocardiography , Signal Processing, Computer-Assisted , Arrhythmias, Cardiac , Heart Rate , Humans , Neural Networks, Computer
10.
Appl Opt ; 55(33): 9396-9406, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27869839

ABSTRACT

Physical layer network coding (PNC) improves the throughput in wireless networks by enabling two nodes to exchange information using a minimum number of time slots. The PNC technique is proposed for two-way relay channel free space optical (TWR-FSO) communications with the aim of maximizing the utilization of network resources. The multipair TWR-FSO is considered in this paper, where a single antenna on each pair seeks to communicate via a common receiver aperture at the relay. Therefore, chip interleaving is adopted as a technique to separate the different transmitted signals at the relay node to perform PNC mapping. Accordingly, this scheme relies on the iterative multiuser technique for detection of users at the receiver. The bit error rate (BER) performance of the proposed system is examined under the combined influences of atmospheric loss, turbulence-induced channel fading, and pointing errors (PEs). By adopting the joint PNC mapping with interleaving and multiuser detection techniques, the BER results show that the proposed scheme can achieve a significant performance improvement against the degrading effects of turbulences and PEs. It is also demonstrated that a larger number of simultaneous users can be supported with this new scheme in establishing a communication link between multiple pairs of nodes in two time slots, thereby improving the channel capacity.

11.
Sci Rep ; 5: 14938, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26450665

ABSTRACT

This research proposes an intelligent decision support system for acute lymphoblastic leukaemia diagnosis from microscopic blood images. A novel clustering algorithm with stimulating discriminant measures (SDM) of both within- and between-cluster scatter variances is proposed to produce robust segmentation of nucleus and cytoplasm of lymphocytes/lymphoblasts. Specifically, the proposed between-cluster evaluation is formulated based on the trade-off of several between-cluster measures of well-known feature extraction methods. The SDM measures are used in conjuction with Genetic Algorithm for clustering nucleus, cytoplasm, and background regions. Subsequently, a total of eighty features consisting of shape, texture, and colour information of the nucleus and cytoplasm sub-images are extracted. A number of classifiers (multi-layer perceptron, Support Vector Machine (SVM) and Dempster-Shafer ensemble) are employed for lymphocyte/lymphoblast classification. Evaluated with the ALL-IDB2 database, the proposed SDM-based clustering overcomes the shortcomings of Fuzzy C-means which focuses purely on within-cluster scatter variance. It also outperforms Linear Discriminant Analysis and Fuzzy Compactness and Separation for nucleus-cytoplasm separation. The overall system achieves superior recognition rates of 96.72% and 96.67% accuracies using bootstrapping and 10-fold cross validation with Dempster-Shafer and SVM, respectively. The results also compare favourably with those reported in the literature, indicating the usefulness of the proposed SDM-based clustering method.


Subject(s)
Algorithms , Diagnosis, Computer-Assisted/methods , Leukemia/diagnosis , Leukocytes/pathology , Support Vector Machine , Cell Nucleus/metabolism , Cluster Analysis , Cytoplasm/metabolism , Databases, Factual , Discriminant Analysis , Humans , Leukemia/blood , Leukocytes/classification , Leukocytes/metabolism , Microscopy/methods , Reproducibility of Results , Sensitivity and Specificity , Staining and Labeling/methods
12.
Sensors (Basel) ; 15(5): 10705-22, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25954952

ABSTRACT

In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a "V" shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers.

SELECTION OF CITATIONS
SEARCH DETAIL
...