Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37896579

ABSTRACT

This paper aims to explore the structural performance of 3D-printed and casted cement-based steel-reinforced concrete beams and one-way slabs incorporating short carbon fibre and activated carbon powder, which have been shown to enhance concrete's flexural strength and reduce its electrical resistivity. The samples are cast and printed in 250 × 325 × 3500 mm beams and 150 × 400 × 3500 mm one-way slabs and mechanical, electrical, and piezoresistivity properties were measured. This length of beams and one-way slabs with rebars have been considered as they can magnify the flexural and cracking behaviour and make them easier to be monitored and analysed. The samples were loaded up to 80% of maximum stress. Crack propagation and strain was assessed using the 2D digital image correlation (DIC) method. The results compared samples under continuously increasing loads between 3D-printed and cast samples. The 3D-printed composites had a better piezoresistive response due to the enhanced anisotropic behaviour. DIC analysis illustrated similar results among different samples, while 3D-printed blocks had lower cracking performance due to the horizontal case fracture in lower stress.

2.
Sensors (Basel) ; 23(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36850681

ABSTRACT

With the rapid development of communication technology as well as a rapid rise in the usage of electronic devices, a growth of concerns over unintentional electromagnetic interference emitted by these devices has been witnessed. Pioneer researchers have deeply studied the relationship between the shielding effectiveness and a few mixed design parameters for cementitious composites incoporating carbon fibres by conducting physical experiments. This paper, therefore, aims to develop and propose a series of prediction models for the shielding effectiveness of cementitious composites involving carbon fibres using frequency and mixed design parameters, such as the water-to-cement ratio, fibre content, sand-to-cement ratio and aspect ratio of the fibres. A multi-variable non-linear regression model and a backpropagation neural network (BPNN) model were developed to meet the different accuracy requirements as well as the complexity requirements. The results showed that the regression model reached an R2 of 0.88 with a root mean squared error (RMSE) of 2.3 dB for the testing set while the BPNN model had an R2 of 0.96 with an RMSE of 2.64 dB. Both models exhibited a sufficient prediction accuracy, and the results also supported that both the regression and the BPNN model are reasonable for such estimation.

3.
Materials (Basel) ; 15(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36556680

ABSTRACT

Concrete wastes such as recycled concrete aggregates (RCA) make up a significant part of construction and demolition waste (C&DW) which can be used to minimize usage of natural aggregates and reduce carbon footprint. This paper studies the salt-scaling resistance of recycled aggregate concrete produced with pretreated RCAs. The test method for evaluating salt-scaling resistance in concrete according to DIN EN 1340: 2003 was performed. Four series of concrete mixes using natural aggregates, RCAs, manually pretreated RCA, and modified RCA in a desiccator were subjected to the different tests in terms of bulk electrical resistance in two directions (X and Y) before and after freeze-thaw cycles, ultrasonic pulse velocity, and weight loss of the surface layer of concrete specimens. Moreover, Scanning Electron Microscopy (SEM) of mixes was conducted and the microstructure of mixes considering the interface transition zone was studied. Results show that after exposure to cycles of freezing and thawing, the quality of concrete regarding ultrasonic pulse velocity did not change. The electrical resistance of specimens decreased significantly in X-direction and slightly in Y-direction after applying freeze-thaw cycles in all mixes. Nevertheless, surface modification of RCAs can increase electrical resistance and improve durability of concrete. SEM images show that the interface transition zone before and after freeze-thaw cycles remained unchanged which means strong bond between aggregate, new mortar, and old mortar. An estimation of the total charge passed indicated that all recycled aggregate concretes can be classified in a safe area and with very low chloride ion penetrability according to ASTM C1202.

4.
Materials (Basel) ; 15(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36234297

ABSTRACT

Non-destructive evaluation using ultrasonic pulse velocity (Vp) testing has extensive applications in the concrete industry. With advances in construction technology, the use of ground granulated blast furnace slag (GGBFS) as a partial replacement to cement in a concrete mix is growing in popularity primarily because it reduces the initial capital cost of raw materials and the associated energy costs. This paper investigates the effect of the water-to-cement (wc) ratio and the cement content replaced by GGBFS on the development with time of the ultimate compressive strength (fc') and the compression wave velocity (Vp) of mortar. The results showed that in the case of mortar with higher percentages of GGBFS replacement (where nucleation surfaces are more abundant), increasing wc can increase fc' but cause a decrease in Vp. The posterior hydration process is highly dependent upon the water particles in the mixture after the first stage of hydration. After 7 days of curing, experimental results show that the fc' of slag blended cement mix design wc ratio of 0.6 surpassed the fc' value of an Ordinary Portland cement. A regression model correlating the fc' and Vp of slag blended mortar is developed, which can be used to predict fc' at concrete ages ranging from 1 day to 28 days for mixes with GGBFS percentage replacement values ranging from 15% to 45%.

5.
Polymers (Basel) ; 14(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36145895

ABSTRACT

Many of the construction materials available are known to cause a drastic level of damage to the environment during their manufacturing stages. Hence, many researchers have attempted to formulate construction materials that are more environmentally friendly. Additionally, the rise in wireless communications in recent decades has seen a rapid increase in electromagnetic pollution and interference, which affects the functionality of sensitive electronic devices. This research is focused on fabricating a more sustainable construction material that could prevent electromagnetic interference for electronic devices housed inside. Carbon fibres of three different lengths were added in four variations to a geopolymer control mix to study their effect on electromagnetic interference shielding. The results showed that the amount of shielding produced by these composites increases with carbon fibre length and quantity. Morphological analyses showed that the interconnectivity of the fibres plays a crucial role in having a high level of shielding. While the flexural strength showed an improvement with the addition of carbon fibre, the compressive strength showed a slight reduction with the increase in carbon fibre length. The optimal level of shielding was produced by the specimen containing 0.7% of 12 mm carbon fibre, which was the maximum amount of fibre of any length used in this study; the optimal level of shielding generated was 43.43 dB within the frequency range of 30 MHz to 1.5 GHz.

6.
J Environ Manage ; 271: 111013, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32778296

ABSTRACT

The copper production process causes waste and by-products called waste copper slag (WCS). A considerable amount of WCS is produced globally. This research aims to utilise WCS as an alternative to natural coarse aggregate in self-compacting concrete (SCC). To achieve this goal, WCS was utilised in different percentages (0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%) as a natural coarse aggregate replacement in SCC production. Following this, the fresh, mechanical, and durability characteristics of SCCs incorporating WCS as a partial replacement of coarse aggregates were investigated in-depth. Incorporating 100% WCS as coarse aggregates in SCCs showed 27%, 29%, and 26% growth in compressive, split, and flexural strengths in 28 days, respectively. The reduction of free drying shrinkage of the mixture containing 100% WCS compared to the control mixture was approximately 36%, and the water absorption of all the specimens was less than 6%. Further, the increase in weight for the mixture containing 100% WCS as coarse aggregates was less than 15% compared to the control mixture. A cost analysis of the SCCs showed that incorporating WCS for all coarse aggregates reduced production costs by 19%. Investigating the economic index of concrete containing WCS as a coarse aggregate showed that utilising the WCS in green SCC was feasible.


Subject(s)
Construction Materials , Copper , Compressive Strength , Conservation of Natural Resources , Water
7.
Nanomaterials (Basel) ; 10(3)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192158

ABSTRACT

Polymer matrix composites have generated a great deal of attention in recent decades in various fields due to numerous advantages polymer offer. The advancement of technology has led to stringent requirements in shielding materials as more and more electronic devices are known to cause electromagnetic interference (EMI) in other devices. The drive to fabricate alternative materials is generated by the shortcomings of the existing metallic panels. While polymers are more economical, easy to fabricate, and corrosion resistant, they are known to be inherent electrical insulators. Since high electrical conductivity is a sought after property of EMI shielding materials, polymers with fillers to increase their electrical conductivity are commonly investigated for EMI shielding. Recently, composites with nanofillers also have attracted attention due to the superior properties they provide compared to their micro counterparts. In this review polymer composites with various types of fillers have been analysed to assess the EMI shielding properties generated by each. Apart from the properties, the manufacturing processes and morphological properties of composites have been analysed in this review to find the best polymer matrix composites for EMI shielding.

8.
Nanomaterials (Basel) ; 9(10)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614556

ABSTRACT

Applications of heterogeneous photocatalytic processes based on semiconductor particles in cement-based materials have received great attention in recent years in enhancing the aesthetic durability of buildings and reducing global environmental pollution. Amongst all, titanium dioxide (TiO2) is the most widely used semiconductor particle in structural materials with photocatalytic activity because of its low cost, chemically stable nature, and absence of toxicity. Utilization of TiO2 in combination with cement-based materials would plunge the concentration of urban pollutants such as NOx. In fact, cementitious composites containing TiO2 have already found applications in self-cleaning buildings, antimicrobial surfaces, and air-purifying structures. This paper aims to present a comprehensive review on TiO2-based photocatalysis cement technology, its practical applications, and research gaps for further progression of cementitious materials with photocatalytic activity.

9.
Materials (Basel) ; 12(7)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30987339

ABSTRACT

Today, the use of recycled aggregates as a substitute for a part of the natural aggregates in concrete production is increasing. This approach is essential because the resources for natural aggregates are decreasing in the world. In the present study, the effects of recycled concrete aggregates as a partial replacement for fine (by 50%) and coarse aggregates (by 100%) were examined in the self-compacting concrete mixtures which contain air-entraining agents and silica fumes. Two series of self-compacting concrete mixes have been prepared. In the first series, fine and coarse recycled mixtures respectively with 50% and 100% replacement with air entraining agent were used. In the second series, fine recycled (with 50% replacement) and coarse recycled (with 100% replacement) were used with silica fume. The rheological properties of the self-compacting concrete (SCC) were determined using slump-flow and J-ring tests. The tests of compressive strength, tensile strength, and compressive stress-strain behavior were performed on both series. The results indicated that air-entraining agent and silica fume have an important role in stabilization of fresh properties of the mixtures. The results of tests indicated a decrease in compressive strength, modulus of elasticity, and energy absorption of concrete mixtures containing air entrained agent. Also, the results showed that complete replacement (100%) with coarse recycled material had no significant effect on mechanical strength, while replacement with 50% fine recycled material has reduced compressive strength, tensile strength, and energy absorption.

10.
Materials (Basel) ; 12(5)2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30862065

ABSTRACT

In this study, the fresh and hardened state properties of heavyweight self-compacting concrete (HWSCC) and heavyweight high strength concrete (HWHSC) containing heavyweight magnetite aggregate with 50, 75, and 100% replacement ratio, and their performance at elevated temperatures were explored experimentally. For fresh-state properties, the flowability and passing ability of HWSCCs were assessed by using slump flow, T500 mm, and J-ring tests. Hardened-state properties including hardened density, compressive strength, and modulus of elasticity were evaluated after 28 days of mixing. High-temperature tests were also performed to study the mass loss, spalling of HWSCC and HWHSC, and residual mechanical properties at 100, 300, 600 and 900 °C with a heating rate of 5 °C/min. Ultimately, by using the experimental data, rational numerical models were established to predict the compressive strength and modulus of elasticity of HWSCC at elevated temperatures. The results of the flowability and passing ability revealed that the addition of magnetite aggregate would not deteriorate the workability of HWSCCs and they retained their self-compacting characteristics. Based on the hardened densities, only self-compacting concrete (SCC) with 100% magnetite content, and high strength concrete (HSC) with 75 and 100% magnetite aggregate can be considered as HWC. For both the compressive strength and elastic modulus, decreasing trends were observed by introducing magnetite aggregate to SCC and HSC at an ambient temperature. Mass loss and spalling evaluations showed severe crack propagation for SCC without magnetite aggregate while SCCs containing magnetite aggregate preserved up to 900 °C. Nevertheless, the mass loss of SCCs containing 75 and 100% magnetite content were higher than that of SCC without magnetite. Due to the pressure build-up, HSCs with and without magnetite showed explosive spalling at high temperatures. The residual mechanical properties analysis indicated that the highest retention of the compressive strength and modulus of elasticity after exposure to elevated temperatures belonged to HWSCC with 100% magnetite content.

11.
Materials (Basel) ; 12(5)2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30836655

ABSTRACT

Ambient-cured heavyweight geopolymer concrete (HWGC) is a new type of concrete that combines the benefits of both heavyweight concrete (HWC) and geopolymer concrete (GC). HWGC provides proper protection from the sources that emit harmful radiations in medical and nuclear industries. Furthermore, HWGC may also be used in offshore structures for pipeline ballasting and similar underwater structures. In this study, heavyweight aggregates (magnetite) have been used and replaced by normal-weight coarse aggregates in GC at volume ratios of 50, 75, and 100% to attain heavyweight classification according to British standards. This study investigates the impacts of high temperatures on standard ambient-cured geopolymer concrete and ambient-cured HWGC through its residual properties regarding compressive and tensile strengths, mass loss, spalling intensity, and flexural strength. The residual properties were examined by heating 100 × 200 mm cylinder specimens to 100, 300, 600, and 900 °C. The results indicated that the maximum compressive strengths of 40.1 and 39.0 MPa were achieved by HWGC at 300 and 100 °C, respectively. The overall result shows that the strength of HWGC increases by increasing magnetite aggregate proportion, while the mass loss, intensity of spalling, and loss of strengths is proportional to temperature after a certain point. Minor spalling with holes and cracking was observed only at 900 °C in HWGC.

12.
Materials (Basel) ; 12(7)2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30925817

ABSTRACT

Heavyweight self-compacting concrete (HWSCC) and heavyweight geopolymer concrete (HWGC) are new types of concrete that integrate the advantages of heavyweight concrete (HWC) with self-compacting concrete (SCC) and geopolymer concrete (GC), respectively. The replacement of natural coarse aggregates with magnetite aggregates in control SCC and control GC at volume ratios of 50%, 75%, and 100% was considered in this study to obtain heavyweight concrete classifications, according to British standards, which provide proper protection from sources that emit harmful radiations in medical and nuclear industries and may also be used in many offshore structures. The main aim of this study is to examine the fresh and mechanical properties of both types of mixes. The experimental program investigates the fresh properties of HWSCC and HWGC through the slump flow test. However, J-ring tests were only conducted for HWSCC mixes to ensure the flow requirements in order to achieve self-compacting properties. Moreover, the mechanical properties of both type of mixes were investigated after 7 and 28 days curing at an ambient temperature. The standard 100 × 200 mm cylinders were subjected to compressive and tensile tests. Furthermore, the flexural strength were examined by testing 450 × 100 × 100 mm prisms under four-point loading. The flexural load-displacement relationship for all mixes were also investigated. The results indicated that the maximum compressive strength of 53.54 MPa was achieved by using the control SCC mix after 28 days. However, in HWGC mixes, the maximum compressive strength of 31.31 MPa was achieved by 25% magnetite replacement samples. The overall result shows the strength of HWSCC decreases by increasing magnetite aggregate proportions, while, in HWGC mixes, the compressive strength increased with 50% magnetite replacement followed by a decrease in strength by 75% and 100% magnetite replacements. The maximum densities of 2901 and 2896 kg/m³ were obtained by 100% magnetite replacements in HWSCC and HWGC, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...