Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Biochem Mol Toxicol ; 38(1): e23564, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37867446

ABSTRACT

Doxorubicin (DOX) is a widely used antineoplastic drug, but its clinical use is limited by significant toxicities, such as hepatotoxicity. In this study, we evaluated the effects of ß-lapachone (ß-LAP), a natural quinone-containing compound, in a mouse model of DOX-induced hepatotoxicity. ß-LAP was orally administered at 1.25, 2.5, and 5 mg/kg for 4 days, and a single dose of DOX (20 mg/kg) was injected intraperitoneally on the second day. Histopathological changes, liver function markers, antioxidant and inflammatory markers were assessed. ß-LAP ameliorated liver injury and liver function markers evoked by DOX. ß-LAP also downregulated the mRNA expression of nuclear factor-kB-corresponding genes including interleukin-6, interleukin-1ß, and tumor necrosis factor-α. Moreover, ß-LAP increased the nuclear factor erythroid 2-related factor 2 target genes heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1, along with antioxidant enzymes including reduced glutathione, catalase, and superoxide dismutase with simultaneous reduction in the lipid peroxidation product malondialdehyde. Meanwhile, it recovered NAD+ /NADH ratios and subsequently elevated the protein levels of sirtuin-1 (SIRT-1), farnesoid X receptor (FXR), and phosphorylated AMP-activated protein kinase (p-AMPK). Collectively, these findings suggest a protective role of ß-LAP against DOX-induced hepatotoxicity by partly regulating the NAD+ /SIRT-1/FXR/p-AMPK axis.


Subject(s)
Chemical and Drug Induced Liver Injury , Naphthoquinones , Mice , Animals , NF-kappa B/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , AMP-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NAD/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Oxidative Stress , Doxorubicin/toxicity , Naphthoquinones/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control
2.
Adv Pharm Bull ; 12(2): 237-247, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35620334

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic metabolic abnormality leading to microvascular and macrovascular complications. Non-insulin Incretin mimic synthetic peptide exendin-4 was introduced as an anti-diabetic drug which helped diabetic patients with triggering insulin secretion; further researches have revealed an effective role of exendin-4 in treatment of T2DM related diseases. Exendin-4 is approximately similar to Glucagon-like peptide, thus it can bind to the glucagon-like peptide-1 receptor (GLP-1R) and activated different signaling pathways that are involved in various bioactivities such as apoptosis, insulin secretion and inactivation of microglial. In this review, we investigated the interesting role of exendin-4 in various kinds of T2DM related disorders through the activation of different signaling pathways.

3.
Iran J Basic Med Sci ; 24(5): 650-656, 2021 May.
Article in English | MEDLINE | ID: mdl-34249267

ABSTRACT

OBJECTIVES: ß-LAPachone (B-LAP) is a natural product with established anti-inflammatory properties. In this study, we investigated the protective potential of B-LAP against diabetic nephropathy in streptozotocin (STZ) induced diabetic mice. MATERIALS AND METHODS: Diabetes induction in mice was carried out by a single intraperitoneal injection of STZ. 2.5 mg/kg/day and 5 mg/kg/day doses of B-LAP were administered orally for twelve weeks and renal histoarchitecture, caspase-3, tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), glutathione peroxidase (GPX), as well as urinary nephrin and neutrophil gelatinase-associated lipocalin (NGAL) were evaluated. Additionally, kidney levels of PI3K, phosphorylated (p)-Akt, p-mTOR, p-CREB, and SIRT1 were assessed in the present investigation. RESULTS: 5 mg/kg B-LAP significantly decreased urinary excretions of nephrin and NGAL. It also mitigated renal TNF-α and MDA levels and simultaneously improved GPX activities. 5 mg/kg B-LAP improved renal function in diabetic mice as indicated by elevated values of creatinine clearance. While B-LAP elevated renal levels of SIRT1, it alleviated PI3K, p-Akt, p-mTOR, and p-CREB levels in the kidneys of diabetic mice. CONCLUSION: Collectively, these findings suggest B-LAP as a potential renoprotective agent in STZ-induced diabetic mice probably via modulating the PI3K/Akt/mTOR pathway.

4.
Int J Mol Cell Med ; 10(1): 68-74, 2021.
Article in English | MEDLINE | ID: mdl-34268255

ABSTRACT

Mesenchymal stem cells have the fundamental ability to differentiate into multiple cells such as osteoblasts, neural cells, and insulin-producing cells. MicroRNAs (miRNAs) are single-strand and small non-coding RNAs involved in stem cells orientation into mature cells. There is no comprehensive data about the dynamic of distinct miRNAs during the differentiation of mesenchymal cells from adipose tissue into insulin-producing cells. In this study, we first differentiated adipose-derived mesenchymal stem cells into insulin-producing cells by a three-stepwise protocol. Differentiation capacity was confirmed by the dithizone staining method and hormone (insulin and C peptide) release analysis via electrochemiluminescence technique. In the final phase, the expression of hsa-miR-101a and hsa-miR-107 and two pancreatic genes, sex-determining region Y-box (SOX) 6 and neuronal differentiation 1 (NeuroD1) were examined during the differentiation procedure on days 0, 7, 14, 21, and 28 after induction, by using real-time PCR assay. The level of C-peptide and insulin were also measured at the end of the experiment. Dithizone staining showed trans-differentiation of adipose-derived mesenchymal stem cells into pancreatic ß cells evidenced with red-to-brown appearance compared to the control group, indicating the potency to insulin production. These features were at maximum levels 28 days after cell differentiation. Real-time PCR revealed the increase of NeuroD1 and reduction of SOX6 during differentiation of stem cells toward insulin-producing cells (P <0.05). Both miR-101a and miR-107 showed prominent expression at day 28 (P <0.05). Changes in the expression of miR-101a and miR-107coincided with alteration of NeuroD1 and SOX6 that could affect mesenchymal stem cells commitment toward insulin-like beta cells.

5.
Int J Mol Cell Med ; 9(2): 140-146, 2020.
Article in English | MEDLINE | ID: mdl-32934951

ABSTRACT

miRNAs are known as the cellular phenomena regulators that exert their effects in post-transcriptional level. Recent studies highlight the role of miRNAs in mesenchymal stem cells differentiation into osteoblasts. The purpose of this study was to recognize the pattern of miRNA-101a-3p and miRNA-200a expression during osteoblastic differentiation of human adipose tissue-derived mesenchymal stem cells. The cells were incubated in osteoblastic differentiation medium for a period of 21 days. Alizarin red S staining was performed to confirm the successful differentiation of adipose-derived mesenchymal stem cells into osteoblast cells. The expression levels of miRNA-101a-3p and miRNA-200a were analyzed by real-time PCR during 0, 7, 14, and 21 days after differentiation induction. Data exhibited the increase of extracellular red color deposition which was evident at the end of the incubation period. The expression of miRNA-101a-3p and miRNA-200a was up regulated during adipose-derived mesenchymal stem cells trans-differentiation into osteoblast-like cells. These miRNAs could be potential novel biomarkers for monitoring successful differentiation of mesenchymal stem cells toward osteoblasts.

6.
Bioimpacts ; 10(4): 243-250, 2020.
Article in English | MEDLINE | ID: mdl-32983940

ABSTRACT

Introduction: Nowadays, mesenchymal stem cells are touted as suitable cell supply for the restoration of injured bone tissue. The existence of osteogenic differentiation makes these cells capable of replenishing damaged cells in the least possible time. It has been shown that epigenetic modifications, especially DNA methylation, contribute to the regulation of various transcription factors during phenotype acquisition. Hence, we concentrated on the correlation between the promoter methylation and the expression of genes DLX3, ATF4 , and FRA1 during osteoblastic differentiation of adipose-derived mesenchymal stem cells in vitro after 21 days. Methods: Adipose-derived mesenchymal stem cells were cultured in osteogenesis differentiation medium supplemented with 0.1 µM dexamethasone, 10 mM ß-glycerol phosphate, and 50 µM ascorbate-2-phosphate for 21 days. RNA and DNA extraction was done on days 0, 7, 14, and 21. Promoter methylation and expression levels of genes DLX3 , ATF4 , and FRA1 were analyzed by methylation-specific quantitative PCR and real-time PCR assays, respectively. Results: We found an upward expression trend with the increasing time for genes DLX3, ATF4, and FRA1 in stem cells committed to osteoblast-like lineage compared to the control group (P <0.05). On the contrary, methylation-specific quantitative PCR displayed decreased methylation rates of DLX3 and ATF4 genes, but not FRA1 , over time compared to the non-treated control cells (P <0.05). Bright-field images exhibited red-colored calcified deposits around Alizarin Red S-stained cells after 21 days compared to the control group. Statistical analysis showed a strong correlation between the transcription of genes DLX3 and ATF4 and methylation rate (P <0.05). Conclusion: In particular, osteoblastic differentiation of adipose-derived mesenchymal stem cells enhances DLX3 and ATF4 transcriptions by reducing methylation rate for 21 days.

7.
Curr Pharm Biotechnol ; 21(10): 906-918, 2020.
Article in English | MEDLINE | ID: mdl-32072899

ABSTRACT

Stem cells are undifferentiated cells and have a great potential in multilineage differentiation. These cells are classified into adult stem cells like Mesenchymal Stem Cells (MSCs) and Embryonic Stem Cells (ESCs). Stem cells also have potential therapeutic utility due to their pluripotency, self-renewal, and differentiation ability. These properties make them a suitable choice for regenerative medicine. Stem cells differentiation toward functional cells is governed by different signaling pathways and transcription factors. Recent studies have demonstrated the key role of microRNAs in the pathogenesis of various diseases, cell cycle regulation, apoptosis, aging, cell fate decisions. Several types of stem cells have different and unique miRNA expression profiles. Our review summarizes novel regulatory roles of miRNAs in the process of stem cell differentiation especially adult stem cells into a variety of functional cells through signaling pathways and transcription factors modulation. Understanding the mechanistic roles of miRNAs might be helpful in elaborating clinical therapies using stem cells and developing novel biomarkers for the early and effective diagnosis of pathologic conditions.


Subject(s)
Cell Differentiation/genetics , Embryonic Stem Cells/cytology , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , Animals , Apoptosis/genetics , Embryonic Stem Cells/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Regenerative Medicine , Signal Transduction , Transcription Factors/metabolism
8.
Curr Stem Cell Res Ther ; 14(7): 570-578, 2019.
Article in English | MEDLINE | ID: mdl-30887929

ABSTRACT

Mesenchymal stem cells (MSCs) have attracted a great deal of interest in the field of regenerative medicine because of their ability to differentiate into mesodermal derivatives and even other germ layers. The main requirement for better differentiation of MSCs into desired cell lineage is relied on pure population of these cells. During the past years, significant progresses have been developed for the identification of MSCs by introducing new markers or different combination of markers. Currently, direct in vitro differentiation protocols using standard media supplemented with specific growth factors generating osteoblast, insulin producing and neuron cells from MSCs show some key characteristic in in vivo counterparts. However, these efforts should be continued to achieve high amount of fully differentiated cells which have high capacity to be used in cell based therapies and drug screening. This review focuses on common culture based differentiation strategies used for osteoblast, insulin producing cells and neural cells generation from MSCs highlighting important findings and trends in this exciting area.


Subject(s)
Cell Differentiation , Insulin/metabolism , Mesenchymal Stem Cells/cytology , Neurons/cytology , Osteoblasts/cytology , Regenerative Medicine , Animals , Humans , Neurons/metabolism , Osteoblasts/metabolism
9.
J Cell Physiol ; 234(6): 8082-8093, 2019 06.
Article in English | MEDLINE | ID: mdl-30548580

ABSTRACT

Osteoblasts are terminally differentiated cells with mesenchymal origins, known to possess pivotal roles in sustaining bone microstructure and homeostasis. These cells are implicated in the pathophysiology of various bone disorders, especially osteoporosis. Over the last few decades, strategies to impede bone resorption, principally by bisphosphonates, have been mainstay of treatment of osteoporosis; however, in recent years more attention has been drawn on bone-forming approaches for managing osteoporosis. MicroRNAs (miRNAs) are a broad category of noncoding short sequence RNA fragments that posttranscriptionally regulate the expression of diverse functional and structural genes in a negative manner. An accumulating body of evidence signifies that miRNAs direct mesenchymal stem cells toward osteoblast differentiation and bone formation through bone morphogenic protein, transforming growth factor-ß, and Wnt signaling pathways. MiRNAs are regarded as excellent future therapeutic candidates because of their small size and ease of delivery into the cells. Considering their novel therapeutic significance, this review discusses the main miRNAs contributing to the anabolic aspects of bone formation and illustrates their interactions with corresponding signaling pathways involved in osteoblastic differentiation.


Subject(s)
Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Osteoporosis/therapy , Bone Morphogenetic Proteins/genetics , Humans , MicroRNAs/genetics , Osteoblasts/metabolism , Osteoblasts/transplantation , Osteoporosis/genetics , Signal Transduction/genetics , Transforming Growth Factor beta/genetics , Wnt Proteins/genetics
10.
Eur J Pharmacol ; 842: 40-48, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30393200

ABSTRACT

Receptor for advanced glycation end-products (RAGE) is involved in the pathogenesis of diabetic nephropathy. FPS-ZM1, a selective RAGE inhibitor, in combination with valsartan were investigated for their protective potentials on the renal markers of tubular injury in streptozotocin-induced diabetic rats. Rats were assigned into groups of receiving FPS-ZM1 (1 mg/kg/day), valsartan (100 mg/kg/day), and FPS-ZM1 plus valsartan (1 mg/kg/day and 100 mg/kg/day, respectively) for one month. Kidney histology, renal inflammation and oxidative stress, and renal and urinary markers of tubular injury were investigated. FPS-ZM1 and valsartan in combination more significantly attenuated renal expressions of tumor necrosis factor-alpha and interleukin-6 genes and reduced urinary levels of interleukin-6. Moreover, the combination elevated renal NAD+/NADH ratios and Sirt1 activities, and mitigated nuclear acetylated NF-κB p65 levels. In addition to alleviating indices of oxidative stress i.e. malondialdehyde, superoxide dismutase and glutathione peroxidase, the combination of FPS-ZM1 and valsartan more effectively upregulated the renal levels of master antioxidant proteins Nrf2, heme oxygenase-1, and NAD(P)H:quinone oxidoreductase-1. Additionally, this dual therapy ameliorated more efficiently the indices of renal tubular injuries as indicated by decreased renal kidney injury molecule-1 levels as well as reduced urinary levels of cystatin C, retinol binding protein, and beta-2-microglobulin. While FPS-ZM1 alone had no appreciable effects on the renal fibrosis, the combination treatment ameliorated fibrosis better than valsartan in the kidneys. Collectively, these findings underline the extra benefits of FPS-ZM1 and valsartan dual administrations in obviating the renal tubular cell injury in streptozotocin-induced diabetic rats partly by suppressing renal inflammation and oxidative stress.


Subject(s)
Benzamides/pharmacology , Diabetes Mellitus, Experimental/pathology , Glycation End Products, Advanced/antagonists & inhibitors , Kidney Tubules/drug effects , Kidney Tubules/injuries , Valsartan/pharmacology , Animals , Collagen/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Drug Interactions , Epithelial Cells/drug effects , Epithelial Cells/pathology , Fibrosis , Glycation End Products, Advanced/metabolism , Kidney Tubules/metabolism , Kidney Tubules/pathology , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar
11.
J. physiol. biochem ; 74(3): 467-478, ago. 2018. tab, graf, ilus
Article in English | IBECS | ID: ibc-179000

ABSTRACT

Despite the effectiveness of renin-angiotensin blockade in retarding diabetic nephropathy progression, a considerable number of patients still develop end-stage renal disease. The present investigation aims to evaluate the protective potential of FPS-ZM1, a selective inhibitor of receptor for advanced glycation end products (RAGE), alone and in combination with valsartan, an angiotensin receptor blocker, against glomerular injury parameters in streptozotocin-induced diabetic rats. FPS-ZM1 at 1 mg/kg (i.p.), valsartan at 100 mg/kg (p.o.), and their combination were administered for 4 weeks, starting 2 months after diabetes induction in rats. Tests for kidney function, glomerular filtration barrier, and podocyte slit diaphragm integrities were performed. Combined FPS-ZM1/valsartan attenuated diabetes-induced elevations in renal levels of RAGE and phosphorylated NF-κB p65 subunit. It ameliorated glomerular injury due to diabetes by increasing glomerular nephrin and synaptopodin expressions, mitigating renal integrin-linked kinase (ILK) levels, and lowering urinary albumin, collagen type IV, and podocin excretions. FPS-ZM1 also improved renal function as demonstrated by decreasing levels of serum cystatin C. Additionally, the combination also alleviated indices of renal inflammation as revealed by decreased renal monocyte chemoattractant protein 1 (MCP-1) and chemokine (C-X-C motif) ligand 12 (CXCL12) expressions, F4/80-positive macrophages, glomerular TUNEL-positive cells, and urinary alpha-1-acid glycoprotein (AGP) levels. These findings underline the benefits of FPS-ZM1 added to valsartan in alleviating renal glomerular injury evoked by diabetes in streptozotocin rats and suggest FPS-ZM1 as a new potential adjunct to the conventional renin-angiotensin blockade


Subject(s)
Humans , Male , Rats , Benzamides/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/prevention & control , Glomerular Filtration Barrier , Valsartan/therapeutic use , Renal Insufficiency/prevention & control , Administration, Oral , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Biomarkers , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/physiopathology , Glomerular Filtration Barrier/metabolism , Glomerular Filtration Barrier/pathology , Valsartan/administration & dosage
12.
J Physiol Biochem ; 74(3): 467-478, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29948786

ABSTRACT

Despite the effectiveness of renin-angiotensin blockade in retarding diabetic nephropathy progression, a considerable number of patients still develop end-stage renal disease. The present investigation aims to evaluate the protective potential of FPS-ZM1, a selective inhibitor of receptor for advanced glycation end products (RAGE), alone and in combination with valsartan, an angiotensin receptor blocker, against glomerular injury parameters in streptozotocin-induced diabetic rats. FPS-ZM1 at 1 mg/kg (i.p.), valsartan at 100 mg/kg (p.o.), and their combination were administered for 4 weeks, starting 2 months after diabetes induction in rats. Tests for kidney function, glomerular filtration barrier, and podocyte slit diaphragm integrities were performed. Combined FPS-ZM1/valsartan attenuated diabetes-induced elevations in renal levels of RAGE and phosphorylated NF-κB p65 subunit. It ameliorated glomerular injury due to diabetes by increasing glomerular nephrin and synaptopodin expressions, mitigating renal integrin-linked kinase (ILK) levels, and lowering urinary albumin, collagen type IV, and podocin excretions. FPS-ZM1 also improved renal function as demonstrated by decreasing levels of serum cystatin C. Additionally, the combination also alleviated indices of renal inflammation as revealed by decreased renal monocyte chemoattractant protein 1 (MCP-1) and chemokine (C-X-C motif) ligand 12 (CXCL12) expressions, F4/80-positive macrophages, glomerular TUNEL-positive cells, and urinary alpha-1-acid glycoprotein (AGP) levels. These findings underline the benefits of FPS-ZM1 added to valsartan in alleviating renal glomerular injury evoked by diabetes in streptozotocin rats and suggest FPS-ZM1 as a new potential adjunct to the conventional renin-angiotensin blockade.


Subject(s)
Benzamides/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/prevention & control , Glomerular Filtration Barrier/drug effects , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Renal Insufficiency/prevention & control , Valsartan/therapeutic use , Administration, Oral , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Animals , Benzamides/administration & dosage , Biomarkers/blood , Biomarkers/metabolism , Biomarkers/urine , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/physiopathology , Drug Therapy, Combination , Glomerular Filtration Barrier/metabolism , Glomerular Filtration Barrier/pathology , Glomerular Filtration Barrier/physiopathology , Injections, Intraperitoneal , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Male , Microscopy, Fluorescence , Phosphorylation/drug effects , Podocytes/drug effects , Podocytes/immunology , Podocytes/metabolism , Podocytes/pathology , Protein Processing, Post-Translational/drug effects , Random Allocation , Rats, Wistar , Receptor for Advanced Glycation End Products/metabolism , Renal Insufficiency/complications , Renal Insufficiency/metabolism , Renal Insufficiency/physiopathology , Transcription Factor RelA/metabolism , Valsartan/administration & dosage
13.
Eur J Pharmacol ; 833: 158-164, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29883668

ABSTRACT

Diabetic nephropathy is one of the most frequent micro-vascular complications both in type 1 and type 2 diabetic patients and is the leading cause of end-stage renal disease worldwide. Although disparate mechanisms give rise to the development of diabetic nephropathy, prevailing evidence accentuates that hyperglycemia-associated generation of advanced glycation end products (AGEs) plays a central role in the disease pathophysiology. Engagement of the receptor for AGE (RAGE) with its ligands provokes oxidative stress and chronic inflammation in renal tissues, ending up with losses in kidney function. Moreover, RAGE activation evokes the activation of different intracellular signaling pathways like PI3K/Akt, MAPK/ERK, and NF-κB; and therefore, its blockade seems to be an attractive therapeutic target in these group of patients. By recognizing the contribution of AGE-RAGE axis to the pathogenesis of diabetic nephropathy, agents that block AGEs formation have been at the heart of investigations for several years, yielding encouraging improvements in experimental models of diabetic nephropathy. Even so, recent studies have evaluated the effects of specific RAGE inhibition with FPS-ZM1 and RAGE-aptamers as novel therapeutic strategies. Despite all these promising outcomes in experimental models of diabetic nephropathy, no thorough clinical trial have ever examined the end results of AGE-RAGE axis blockade in patients of diabetic nephropathy. As most of the AGE lowering or RAGE inhibiting compounds have emerged to be non-toxic, devising novel clinical trials appears to be inevitable. Here, the current potential treatment options for diabetic nephropathy by AGE-RAGE inhibitory modalities have been reviewed.


Subject(s)
Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Glycation End Products, Advanced/metabolism , Receptor for Advanced Glycation End Products/metabolism , Animals , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...