Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 24(7): 1790-4, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24618302

ABSTRACT

Herein we report the design and synthesis of a series of novel bicyclic DGAT1 inhibitors with a carboxylic acid moiety. The optimization of the initial lead compound 7 based on in vitro and in vivo activity led to the discovery of potent indoline and quinoline classes of DGAT1 inhibitors. The structure-activity relationship studies of these novel series of bicyclic carboxylic acid derivatives as DGAT1 inhibitors are described.


Subject(s)
Carboxylic Acids/pharmacology , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Quinolones/pharmacology , Animals , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Diacylglycerol O-Acyltransferase/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mice , Models, Molecular , Molecular Structure , Quinolones/chemical synthesis , Quinolones/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 23(21): 6001-3, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24050887

ABSTRACT

A novel series of benzimidazolone-containing histamine H3-receptor antagonists were prepared and their structure-activity relationship was explored. These benzimidazolone analogs demonstrate potent H3-receptor binding affinities, no P450 enzyme inhibition, and strong H3 functional activity. Compound 1o exhibits the best overall profile with H3Ki=0.95nM and rat AUC=12.9µMh.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/pharmacology , Animals , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Guinea Pigs , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/pharmacokinetics , Humans , Rats , Receptors, Histamine H3/metabolism , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 23(21): 6004-9, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24035485

ABSTRACT

A novel series of non-imidazole bicyclic and tricyclic histamine H3 receptor antagonists has been discovered. Compound 17 was identified as a centrally penetrant molecule with high receptor occupancy which demonstrates robust oral activity in rodent models of obesity. In addition compound 17 possesses clean CYP and hERG profiles and shows no behavioral changes in the Irwin test.


Subject(s)
Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/therapeutic use , Obesity/drug therapy , Animals , Histamine H3 Antagonists/metabolism , Histamine H3 Antagonists/pharmacokinetics , Humans , Microsomes, Liver/metabolism , Rats , Receptors, Histamine H3/metabolism
5.
Bioorg Med Chem Lett ; 23(4): 985-8, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23317570

ABSTRACT

The structure-activity relationship studies of a novel series of carboxylic acid derivatives of pyridine-carboxamides as DGAT-1 inhibitors is described. The optimization of the initial lead compound 6 based on in vitro and in vivo activity led to the discovery of key compounds 10j and 17h.


Subject(s)
Amides/pharmacology , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Pyridines/pharmacology , Animals , Diacylglycerol O-Acyltransferase/metabolism , Enzyme Inhibitors/chemistry , Humans , Mice , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 22(14): 4896-9, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22687744

ABSTRACT

The structure-activity relationship studies of a novel sulfonylurea series of piperazine pyridazine-based small molecule glucan synthase inhibitors is described. The optimization of PK profiles within the series led to the discovery of several compounds with improved pharmacokinetic profiles which demonstrated in vitro potency against clinically relevant strains. However, the advancement of compounds from this series into a non-lethal systemic fungal infection model failed to show in vivo efficacy.


Subject(s)
Antifungal Agents/chemistry , Enzyme Inhibitors/chemistry , Glucosyltransferases/antagonists & inhibitors , Lead/chemistry , Piperazines/chemistry , Pyridazines/chemistry , Sulfonylurea Compounds/chemistry , Animals , Antifungal Agents/pharmacology , Candida/drug effects , Cell Line , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Piperazine , Pyridazines/pharmacology , Rats , Structure-Activity Relationship , Sulfonylurea Compounds/pharmacology
8.
ACS Med Chem Lett ; 3(3): 198-202, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-24900450

ABSTRACT

A series of novel 2-piperidinopiperidine thiadiazoles were synthesized and evaluated as new leads of histamine H3 receptor antagonists. The 4-(5-([1,4'-bipiperidin]-1'-yl)-1,3,4-thiadiazol-2-yl)-2-(pyridin-2-yl)morpholine (5u) displayed excellent potency and ex vivo receptor occupancy. Compound 5u was also evaluated in vivo for antidiabetic efficacy in STZ diet-induced obesity type 2 diabetic mice for 2 or 12 days. Non-fasting glucose levels were significantly reduced as compared with vehicle-treated mice. In addition, 5u dose dependently blocked the increase of HbA1c after 12 days of treatment.

9.
Antimicrob Agents Chemother ; 55(11): 5099-106, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21844320

ABSTRACT

The echinocandins are a class of semisynthetic natural products that target ß-1,3-glucan synthase (GS). Their proven clinical efficacy combined with minimal safety issues has made the echinocandins an important asset in the management of fungal infection in a variety of patient populations. However, the echinocandins are delivered only parenterally. A screen for antifungal bioactivities combined with mechanism-of-action studies identified a class of piperazinyl-pyridazinones that target GS. The compounds exhibited in vitro activity comparable, and in some cases superior, to that of the echinocandins. The compounds inhibit GS in vitro, and there was a strong correlation between enzyme inhibition and in vitro antifungal activity. In addition, like the echinocandins, the compounds caused a leakage of cytoplasmic contents from yeast and produced a morphological response in molds characteristic of GS inhibitors. Spontaneous mutants of Saccharomyces cerevisiae with reduced susceptibility to the piperazinyl-pyridazinones had substitutions in FKS1. The sites of these substitutions were distinct from those conferring resistance to echinocandins; likewise, echinocandin-resistant isolates remained susceptible to the test compounds. Finally, we present efficacy and pharmacokinetic data on an example of the piperazinyl-pyridazinone compounds that demonstrated efficacy in a murine model of Candida glabrata infection.


Subject(s)
Antifungal Agents/pharmacology , Glucosyltransferases/antagonists & inhibitors , Animals , Antifungal Agents/chemistry , Candida glabrata/drug effects , Candida glabrata/enzymology , Candida glabrata/pathogenicity , Candidiasis/drug therapy , Male , Mice , Molecular Structure , Piperazines/chemistry , Piperazines/pharmacology , Pyridazines/chemistry , Pyridazines/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology
10.
Bioorg Med Chem Lett ; 21(6): 1819-22, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21316223

ABSTRACT

A structure-activity relationship study of the lead 5-[4-(benzylsulfonyl)piperazin-1-yl]-4-morpholino-2-phenyl-pyridazin-3(2H)-one 1 has resulted in the identification of 2-(3,5-difluorophenyl)-4-(3-fluorocyclopentyloxy)-5-[4-(isopropylsulfonyl)piperazin-1-yl]-pyridazin-3(2H)-one 11c as a ß-1,3-glucan synthase inhibitor. Compound 11c exhibited significant efficacy in an in vivo mouse model of Candida glabrata infection.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glucosyltransferases/antagonists & inhibitors , Pyridazines/chemistry , Pyridazines/pharmacology , Enzyme Inhibitors/chemical synthesis , Pyridazines/chemical synthesis , Structure-Activity Relationship
11.
J Pharmacol Exp Ther ; 337(1): 256-66, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21233198

ABSTRACT

We define the pharmacological and pharmacokinetic profiles of a novel α(2C)-adrenoceptor agonist, compound A [N-[3,4-dihydro-4-(1H-imidazol-4-ylmethyl)-2H-1,4-benzoxazin-6-yl]-N-ethyl-N'-methylurea]. This compound has high affinity (K(i)) for the human α(2C)-adrenoceptor (K(i) = 12 nM), and 190- to 260-fold selectivity over the α(2A)- and α(2B)-adrenoceptor subtypes. In cell-based functional assays, compound A produced good agonist (EC(50) = 166 nM) and efficacy (E(max) = 64%) responses at the α(2C)-adrenoceptor, much lower potency and efficacy at the α(2A)-adrenoceptor (EC(50) = 1525 nM; E(max) = 8%) and α(2B)-adrenoceptor (EC(50) = 5814 nM; E(max) = 21%) subtypes, and low or no affinity and functional activity at the α(1A)-, α(1B)-, and α(1D)-adrenoceptor subtypes. In the human saphenous vein postjunctional α(2C)-adrenoceptor bioassay, compound A functions as a potent agonist (pD(2) = 6.3). In a real-time contraction bioassay of pig nasal mucosa, compound A preferentially constricted the veins (EC(50) = 108 nM), and the magnitude of arteriolar contraction reached only 50% of the maximum venular responses. Compound A exhibited no effect on locomotor activity, sedation, and body temperature in mice (up to 100 mg/kg) and did not cause hypertension and mydriasis (30 mg/kg) in conscious rats. Compound A is orally bioavailable (24%) with good plasma exposure. This compound is a substrate for the efflux P-glycoprotein transporter, resulting in very low central nervous system (CNS) penetration. In summary, compound A is a highly selective, orally active, and non-CNS-penetrating α(2C)-adrenoceptor agonist with desirable in vitro and in vivo pharmacological properties suitable for the treatment of nasal congestion.


Subject(s)
Adrenergic Agonists/chemistry , Adrenergic Agonists/pharmacology , Methylurea Compounds/chemistry , Methylurea Compounds/pharmacology , Morpholines/chemistry , Morpholines/pharmacology , Motor Activity/drug effects , Nasal Mucosa/drug effects , Receptors, Adrenergic, alpha-2/metabolism , Saphenous Vein/drug effects , Adrenergic Agonists/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Male , Methylurea Compounds/metabolism , Mice , Mice, Inbred C57BL , Morpholines/metabolism , Motor Activity/physiology , Nasal Mucosa/metabolism , Rats , Rats, Sprague-Dawley , Recombinant Proteins/agonists , Recombinant Proteins/metabolism , Saphenous Vein/metabolism , Swine
12.
Bioorg Med Chem Lett ; 19(21): 6176-80, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19773164

ABSTRACT

A series of 2-(1,4'-bipiperidine-1'-yl)thiazolopyridines was synthesized and evaluated as a new lead of non-imidazole histamine H(3) receptor antagonists. Introduction of diversity at the 6-position of the pyridine ring was designed to enhance in vitro potency and decrease hERG activity. The structure-activity relationships for these new thiazolopyridine antagonists are discussed.


Subject(s)
Histamine Antagonists/chemistry , Pyridines/chemistry , Receptors, Histamine H3/chemistry , Animals , Haplorhini , Histamine Antagonists/chemical synthesis , Histamine Antagonists/pharmacokinetics , Humans , Mice , Mice, Inbred ICR , Microsomes, Liver/metabolism , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats , Receptors, Histamine H3/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship , Trans-Activators/metabolism , Transcriptional Regulator ERG
SELECTION OF CITATIONS
SEARCH DETAIL
...