Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Diabetes ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869519

ABSTRACT

Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2R/D3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.

2.
bioRxiv ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38529497

ABSTRACT

Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.

3.
ACS Pharmacol Transl Sci ; 6(10): 1373-1381, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37854631

ABSTRACT

G protein-coupled receptors are among the most widely studied classes of drug targets. A major challenge in this field is to develop ligands that will selectively modulate a single receptor subtype to overcome the disadvantages of undesired "off target" effects caused by lack of target and thus signaling specificity. In the current study, we explored ligand design for the melanocortin 4 receptor (MC4R) since it is an attractive target for developing antiobesity drugs. Endogenously, the receptor is activated by peptide ligands, i.e., three melanocyte-stimulating hormones (α-MSH, ß-MSH, and γ-MSH) and by adrenocorticotropic hormone. Therefore, we utilized a peptide drug design approach, utilizing "molecular grafting" of pharmacophore peptide sequence motifs onto a stable nature-derived peptide scaffold. Specifically, protegrin-4-like-peptide-1 (Pr4LP1) and arenicin-1-like-peptide-1 (Ar3LP1) fully activated MC4R in a functional cAMP assay with potencies of 3.7 and 1.0 nM, respectively. In a nanoluciferase complementation assay with less signal amplification, the designed peptides fully recruited mini-Gs with subnanomolar and nanomolar potencies. Interestingly, these novel peptide MC4R ligands recruited ß-arrestin-2 with ∼2-fold greater efficacies and ∼20-fold increased potencies as compared to the endogenous α-MSH. The peptides were inactive at related MC1R and MC3R in a cAMP accumulation assay. These findings highlight the applicability of animal-derived disulfide-rich scaffolds to design pathway and subtype selective MC4R pharmacological probes. In the future, this approach could be exploited to develop functionally selective ligands that could offer safer and more effective obesity drugs.

4.
iScience ; 25(8): 104771, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35982797

ABSTRACT

Bromocriptine is approved as a diabetes therapy, yet its therapeutic mechanisms remain unclear. Though bromocriptine's actions have been mainly attributed to the stimulation of brain dopamine D2 receptors (D2R), bromocriptine also targets the pancreas. Here, we employ bromocriptine as a tool to elucidate the roles of catecholamine signaling in regulating pancreatic hormone secretion. In ß-cells, bromocriptine acts on D2R and α2A-adrenergic receptor (α2A-AR) to reduce glucose-stimulated insulin secretion (GSIS). Moreover, in α-cells, bromocriptine acts via D2R to reduce glucagon secretion. α2A-AR activation by bromocriptine recruits an ensemble of G proteins with no ß-arrestin2 recruitment. In contrast, D2R recruits G proteins and ß-arrestin2 upon bromocriptine stimulation, demonstrating receptor-specific signaling. Docking studies reveal distinct bromocriptine binding to α2A-AR versus D2R, providing a structural basis for bromocriptine's dual actions on ß-cell α2A-AR and D2R. Together, joint dopaminergic and adrenergic receptor actions on α-cell and ß-cell hormone release provide a new therapeutic mechanism to improve dysglycemia.

5.
Aging Cell ; 20(5): e13365, 2021 05.
Article in English | MEDLINE | ID: mdl-33909313

ABSTRACT

Age is the greatest risk factor for Parkinson's disease (PD) which causes progressive loss of dopamine (DA) neurons, with males at greater risk than females. Intriguingly, some DA neurons are more resilient to degeneration than others. Increasing evidence suggests that vesicular glutamate transporter (VGLUT) expression in DA neurons plays a role in this selective vulnerability. We investigated the role of DA neuron VGLUT in sex- and age-related differences in DA neuron vulnerability using the genetically tractable Drosophila model. We found sex differences in age-related DA neurodegeneration and its associated locomotor behavior, where males exhibit significantly greater decreases in both DA neuron number and locomotion during aging compared with females. We discovered that dynamic changes in DA neuron VGLUT expression mediate these age- and sex-related differences, as a potential compensatory mechanism for diminished DA neurotransmission during aging. Importantly, female Drosophila possess higher levels of VGLUT expression in DA neurons compared with males, and this finding is conserved across flies, rodents, and humans. Moreover, we showed that diminishing VGLUT expression in DA neurons eliminates females' greater resilience to DA neuron loss across aging. This offers a new mechanism for sex differences in selective DA neuron vulnerability to age-related DA neurodegeneration. Finally, in mice, we showed that the ability of DA neurons to achieve optimal control over VGLUT expression is essential for DA neuron survival. These findings lay the groundwork for the manipulation of DA neuron VGLUT expression as a novel therapeutic strategy to boost DA neuron resilience to age- and PD-related neurodegeneration.


Subject(s)
Aging/physiology , Dopaminergic Neurons/physiology , Drosophila Proteins/physiology , Sex Characteristics , Vesicular Glutamate Transport Proteins/physiology , Animals , Cell Survival , Dopaminergic Neurons/metabolism , Drosophila/metabolism , Drosophila/physiology , Drosophila Proteins/metabolism , Female , Humans , Locomotion , Male , Mice , Rats , Vesicular Glutamate Transport Proteins/metabolism
6.
Transl Psychiatry ; 11(1): 59, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33589583

ABSTRACT

Dopamine (DA) and norepinephrine (NE) are catecholamines primarily studied in the central nervous system that also act in the pancreas as peripheral regulators of metabolism. Pancreatic catecholamine signaling has also been increasingly implicated as a mechanism responsible for the metabolic disturbances produced by antipsychotic drugs (APDs). Critically, however, the mechanisms by which catecholamines modulate pancreatic hormone release are not completely understood. We show that human and mouse pancreatic α- and ß-cells express the catecholamine biosynthetic and signaling machinery, and that α-cells synthesize DA de novo. This locally-produced pancreatic DA signals via both α- and ß-cell adrenergic and dopaminergic receptors with different affinities to regulate glucagon and insulin release. Significantly, we show DA functions as a biased agonist at α2A-adrenergic receptors, preferentially signaling via the canonical G protein-mediated pathway. Our findings highlight the interplay between DA and NE signaling as a novel form of regulation to modulate pancreatic hormone release. Lastly, pharmacological blockade of DA D2-like receptors in human islets with APDs significantly raises insulin and glucagon release. This offers a new mechanism where APDs act directly on islet α- and ß-cell targets to produce metabolic disturbances.


Subject(s)
Dopamine , Glucagon , Adrenergic Agents , Glucagon/metabolism , Insulin/metabolism , Insulin Secretion , Norepinephrine , Pancreas/metabolism
7.
Sci Adv ; 6(14): eaay9572, 2020 04.
Article in English | MEDLINE | ID: mdl-32270040

ABSTRACT

The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic ß-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells.


Subject(s)
Cytoplasmic Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Ribosomes/metabolism , Animals , Biological Transport , Cryoelectron Microscopy , Cytoplasmic Vesicles/ultrastructure , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Mice , Mitochondria/metabolism , Mitochondria/ultrastructure , Molecular Imaging , Organ Specificity , Rats , Ribosomes/ultrastructure , Stress, Physiological
8.
Proc Natl Acad Sci U S A ; 117(13): 7455-7460, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32184323

ABSTRACT

cAMP production upon activation of Gs by G protein-coupled receptors has classically been considered to be plasma membrane-delimited, but a shift in this paradigm has occurred in recent years with the identification of several receptors that continue to signal from early endosomes after internalization. The molecular mechanisms regulating this aspect of signaling remain incompletely understood. Here, we investigated the role of Gq/11 activation by the parathyroid hormone (PTH) type 1 receptor (PTHR) in mediating endosomal cAMP responses. Inhibition of Gq/11 signaling by FR900359 markedly reduced the duration of PTH-induced cAMP production, and this effect was mimicked in cells lacking endogenous Gαq/11 We determined that modulation of cAMP generation by Gq/11 occurs at the level of the heterotrimeric G protein via liberation of cell surface Gßγ subunits, which, in turn, act in a phosphoinositide-3 kinase-dependent manner to promote the assembly of PTHR-ßarrestin-Gßγ signaling complexes that mediate endosomal cAMP responses. These results unveil insights into the spatiotemporal regulation of Gs-dependent cAMP signaling.


Subject(s)
Cyclic AMP/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Receptor, Parathyroid Hormone, Type 1/metabolism , Animals , Arrestins/metabolism , Cell Membrane/metabolism , Depsipeptides/pharmacology , Endosomes/metabolism , HEK293 Cells , Humans , Mice , Osteoblasts/metabolism , Parathyroid Hormone/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Primary Cell Culture , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , beta-Arrestins/metabolism
9.
Psychoneuroendocrinology ; 113: 104551, 2020 03.
Article in English | MEDLINE | ID: mdl-31884319

ABSTRACT

Antipsychotic drugs (APD) have clinically important, adverse effects on metabolism that limit their therapeutic utility. Pancreatic beta cells produce dopamine and express the D2 dopamine receptor (D2R). As D2R antagonists, APDs alter glucose-stimulated insulin secretion, indicating that dopamine likely plays a role in APD-induced metabolic dysfunction. Insulin secretion from beta cells is also modulated by the circadian clock. Disturbed circadian rhythms cause metabolic disturbances similar to those observed in APD-treated subjects. Given the importance of dopamine and circadian rhythms for beta cells, we hypothesized that the beta cell dopamine system and circadian clock interact and dually regulate insulin secretion, and that circadian manipulations may alter the metabolic impact of APDs. We measured circadian rhythms, insulin release, and the impact of dopamine upon these processes in beta cells using bioluminescent reporters. We then assessed the impact of circadian timing on weight gain and metabolic outcomes in mice treated with the APD sulpiride at the onset of light or dark. We found that molecular components of the dopamine system were rhythmically expressed in beta cells. D2R stimulation by endogenous dopamine or the agonist bromocriptine reduced circadian rhythm amplitude, and altered the temporal profile of insulin secretion. Sulpiride caused greater weight gain and hyperinsulinemia in mice when given in the dark phase compared to the light phase. D2R-acting drugs affect circadian-dopamine interactions and modulate beta cell metabolic function. These findings identify circadian timing as a novel and important mechanism underlying APD-induced metabolic dysfunction, offering new possibilities for therapeutic interventions.


Subject(s)
Circadian Rhythm/drug effects , Insulin-Secreting Cells/metabolism , Receptors, Dopamine D2/metabolism , Animals , Blood Glucose/metabolism , Bromocriptine/pharmacology , Circadian Rhythm/physiology , Diabetes Mellitus, Type 2/metabolism , Dopamine/metabolism , Dopamine Agonists/pharmacology , Female , Glucose/metabolism , Insulin/metabolism , Insulin-Secreting Cells/physiology , Levodopa/pharmacology , Mice , Mice, Inbred C57BL , Obesity/metabolism , Receptors, Dopamine D2/physiology , Sulpiride/pharmacology , Weight Gain
10.
Mol Psychiatry ; 25(9): 2070-2085, 2020 09.
Article in English | MEDLINE | ID: mdl-30626912

ABSTRACT

Although long-studied in the central nervous system, there is increasing evidence that dopamine (DA) has important roles in the periphery including in metabolic regulation. Insulin-secreting pancreatic ß-cells express the machinery for DA synthesis and catabolism, as well as all five DA receptors. In these cells, DA functions as a negative regulator of glucose-stimulated insulin secretion (GSIS), which is mediated by DA D2-like receptors including D2 (D2R) and D3 (D3R) receptors. However, the fundamental mechanisms of DA synthesis, storage, release, and signaling in pancreatic ß-cells and their functional relevance in vivo remain poorly understood. Here, we assessed the roles of the DA precursor L-DOPA in ß-cell DA synthesis and release in conjunction with the signaling mechanisms underlying DA's inhibition of GSIS. Our results show that the uptake of L-DOPA is essential for establishing intracellular DA stores in ß-cells. Glucose stimulation significantly enhances L-DOPA uptake, leading to increased DA release and GSIS reduction in an autocrine/paracrine manner. Furthermore, D2R and D3R act in combination to mediate dopaminergic inhibition of GSIS. Transgenic knockout mice in which ß-cell D2R or D3R expression is eliminated exhibit diminished DA secretion during glucose stimulation, suggesting a new mechanism where D2-like receptors modify DA release to modulate GSIS. Lastly, ß-cell-selective D2R knockout mice exhibit marked postprandial hyperinsulinemia in vivo. These results reveal that peripheral D2R and D3R receptors play important roles in metabolism through their inhibitory effects on GSIS. This opens the possibility that blockade of peripheral D2-like receptors by drugs including antipsychotic medications may significantly contribute to the metabolic disturbances observed clinically.


Subject(s)
Dopamine , Insulin-Secreting Cells , Animals , Dopamine/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Mice , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/genetics , Receptors, Dopamine D3/metabolism
11.
J Vis Exp ; (135)2018 May 10.
Article in English | MEDLINE | ID: mdl-29806846

ABSTRACT

The detection of insulin secretion is critical for elucidating mechanisms of regulated secretion as well as in studies of metabolism. Though numerous insulin assays have existed for decades, the recent advent of homogeneous time-resolved Förster Resonance Energy Transfer (HTRF) technology has significantly simplified these measurements. This is a rapid, cost-effective, reproducible, and robust optical assay reliant upon antibodies conjugated to bright fluorophores with long lasting emission which facilitates time-resolved Förster Resonance Energy Transfer. Moreover, HTRF insulin detection is amenable for the development of high-throughput screening assays. Here we use HTRF to detect insulin secretion in INS-1E cells, a rat insulinoma-derived cell line. This allows us to estimate basal levels of insulin and their changes in response to glucose stimulation. In addition, we use this insulin detection system to confirm the role of dopamine as a negative regulator of glucose-stimulated insulin secretion (GSIS). In a similar manner, other dopamine D2-like receptor agonists, quinpirole, and bromocriptine, reduce GSIS in a concentration-dependent manner. Our results highlight the utility of the HTRF insulin assay format in determining the role of numerous drugs in GSIS and their pharmacological profiles.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Insulin/metabolism , Humans , Insulin Secretion
12.
Front Neurosci ; 11: 432, 2017.
Article in English | MEDLINE | ID: mdl-28804444

ABSTRACT

For decades, there have been observations demonstrating significant metabolic disturbances in people with schizophrenia including clinically relevant weight gain, hypertension, and disturbances in glucose and lipid homeostasis. Many of these findings pre-date the use of antipsychotic drugs (APDs) which on their own are also strongly associated with metabolic side effects. The combination of APD-induced metabolic changes and common adverse environmental factors associated with schizophrenia have made it difficult to determine the specific contributions of each to the overall metabolic picture. Data from drug-naïve patients, both from the pre-APD era and more recently, suggest that there may be an intrinsic metabolic risk associated with schizophrenia. Nevertheless, these findings remain controversial due to significant clinical variability in both psychiatric and metabolic symptoms throughout patients' disease courses. Here, we provide an extensive review of classic and more recent literature describing the metabolic phenotype associated with schizophrenia. We also suggest potential mechanistic links between signaling pathways associated with schizophrenia and metabolic dysfunction. We propose that, beyond its symptomatology in the central nervous system, schizophrenia is also characterized by pathophysiology in other organ systems directly related to metabolic control.

13.
J Biol Chem ; 290(23): 14785-96, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25918156

ABSTRACT

Each subtype of the muscarinic receptor family of G protein-coupled receptors is activated by similar concentrations of the neurotransmitter acetylcholine or closely related synthetic analogs such as carbachol. However, pharmacological selectivity can be generated by the introduction of a pair of mutations to produce Receptor Activated Solely by Synthetic Ligand (RASSL) forms of muscarinic receptors. These display loss of potency for acetylcholine/carbachol alongside a concurrent gain in potency for the ligand clozapine N-oxide. Co-expression of a form of wild type human M2 and a RASSL variant of the human M3 receptor resulted in concurrent detection of each of M2-M2 and M3-M3 homomers alongside M2-M3 heteromers at the surface of stably transfected Flp-In(TM) T-REx(TM) 293 cells. In this setting occupancy of the receptors with a muscarinic antagonist was without detectable effect on any of the muscarinic oligomers. However, selective agonist occupancy of the M2 receptor resulted in enhanced M2-M2 homomer interactions but decreased M2-M3 heteromer interactions. By contrast, selective activation of the M3 RASSL receptor did not significantly alter either M3-M3 homomer or M2-M3 heteromer interactions. Selectively targeting closely related receptor oligomers may provide novel therapeutic opportunities.


Subject(s)
Muscarinic Agonists/pharmacology , Protein Multimerization/drug effects , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M3/metabolism , Cell Line , Glycosylation , Humans , Mutation , Receptor, Muscarinic M2/chemistry , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M3/chemistry , Receptor, Muscarinic M3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...