Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 75(4): 933-941, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35704393

ABSTRACT

The COVID-19 pandemic has raised interest in using devices that generate ultraviolet C (UVC) radiation as an alternative approach for reducing or eliminating microorganisms on surfaces. Studies investigating the efficacy of UVC radiation against pathogens use a wide range of laboratory methods and experimental conditions that can make cross-comparison of results and extrapolation of findings to real-world settings difficult. Here, we use three different UVC-generating sources - a broad-spectrum pulsed xenon light, a continuous light-emitting diode (LED), and a low-pressure mercury vapour lamp - to evaluate the impact of different experimental conditions on UVC efficacy against the coliphage MS2 on surfaces. We find that a nonlinear dose-response relationship exists for all three light sources, meaning that linear extrapolation of doses resulting in a 1-log10 (90%) reduction does not accurately predict the dose required for higher (e.g. 3-log10 or 99.9%) log10 reductions. In addition, our results show that the inoculum characteristics and underlying substrate play an important role in determining UVC efficacy. Variations in microscopic surface topography may shield MS2 from UVC radiation to different degrees, which impacts UVC device efficacy. These findings are important to consider in comparing results from different UVC studies and in estimating device performance in field conditions.


Subject(s)
COVID-19 , Mercury , Disinfection/methods , Humans , Levivirus , Pandemics , Ultraviolet Rays , Xenon
2.
J Appl Microbiol ; 127(5): 1315-1326, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31379024

ABSTRACT

AIMS: (i) To develop an analytical method for recovery and quantification of bacteriophage MS2-as a surrogate for foot-and-mouth disease virus-from complex porous surfaces, with and without the presence of laboratory-developed agricultural grime; (ii) to evaluate, with a 4-log dynamic range, the virucidal activity of common biocides for their ability to decontaminate surfaces and hence remediate facilities, following a foreign animal disease contamination incident. METHODS AND RESULTS: An analytical method was developed and optimized for MS2 recovery from simulated agricultural surfaces. The addition of Dey-Engley neutralizing broth to an extraction buffer improved MS2 viability in liquid extracts, with optimal analytical holding times determined as <8 to ≤24 h, depending on matrix. The recovery of MS2 from surface materials decreased in the order: nonporous reference material >grimed porous materials >nongrimed porous materials. In disinfectant testing, two spray applications of pAB were effective against MS2 (≥4-log reduction) on all operational-scale materials. Two per cent citric acid had limited effectiveness, with a ≥4-log reduction observed on a selected subset of grimed concrete samples. CONCLUSIONS: Decontamination efficacy test results can be affected by surface characteristics, extraction buffer composition, analytical holding time and surface-specific organism survivability. Efficacy should be evaluated using a test method that reflects the environmental characteristics of the intended application. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study demonstrate the importance of analytical method verification tests for disinfectant testing prior to application in complex environments.


Subject(s)
Decontamination/methods , Disinfectants/pharmacology , Levivirus/drug effects , Agriculture , Disinfectants/administration & dosage , Levivirus/physiology , Microbial Viability/drug effects , Porosity , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...