Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0299131, 2024.
Article in English | MEDLINE | ID: mdl-38603667

ABSTRACT

BACKGROUND: The prediction of Acute Kidney Injury (AKI)-related outcomes remains challenging. Persistent kidney excretory dysfunction for longer than 7 days has been defined as Acute Kidney Disease (AKD). In this study, we prospectively quantified serum Nostrin, an essential regulator of endothelial NO metabolism, in hospitalized patients with AKI. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: In-hospital subjects with AKI of various etiology were identified through the in-hospital AKI alert system of the Brandenburg University Hospital. Serum Nostrin, and serum NGAL and KIM-1 were measured within a maximum of 48 hours from the timepoint of initial diagnosis of AKI. The following endpoints were defined: in-hospital death, need of kidney replacement therapy (KRT), recovery of kidney function (ROKF) until discharge. RESULTS: AKI patients had significantly higher serum Nostrin levels compared to Controls. The level of serum Nostrin increased significantly with the severity of AKI. Within the group of AKI patients (n = 150) the in-hospital mortality was 16.7%, KRT was performed in 39.3%, no ROKF occurred in 28%. Patients who required KRT had significantly higher levels of serum Nostrin compared to patients who did not require KRT. Significantly higher levels of serum Nostrin were also detected in AKI patients without ROKF compared to patients with ROKF. In addition, low serum Nostrin levels at the timepoint of AKI diagnosis were predictive of in-hospital survival. For comparison, the serum concentrations of NGAL and KIM-1 were determined in parallel to the Nostrin concentrations and the results confirm the prognostic properties of serum Nostrin in AKI. CONCLUSIONS: The current study suggests serum Nostrin as novel biomarker of AKI-associated mortality, KRT and Acute Kidney Disease.


Subject(s)
Acute Kidney Injury , Humans , Lipocalin-2 , Hospital Mortality , Acute Kidney Injury/diagnosis , Biomarkers , Renal Replacement Therapy , Risk Factors , Acute Disease
4.
Chembiochem ; 16(8): 1175-82, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25907804

ABSTRACT

The biologically active compound mensacarcin is produced by Streptomyces bottropensis. The cosmid cos2 contains a large part of the mensacarcin biosynthesis gene cluster. Heterologous expression of this cosmid in Streptomyces albus J1074 led to the production of the intermediate didesmethylmensacarcin (DDMM). In order to gain more insights into the biosynthesis, gene inactivation experiments were carried out by λ-Red/ET-mediated recombination, and the deletion mutants were introduced into the host S. albus. In total, 23 genes were inactivated. Analysis of the metabolic profiles of the mutant strains showed the complete collapse of DDMM biosynthesis, but upon overexpression of the SARP regulatory gene msnR1 in each mutant new intermediates were detected. The compounds were isolated, and their structures were elucidated. Based on the results the specific functions of several enzymes were determined, and a pathway for mensacarcin biosynthesis is proposed.


Subject(s)
Anthracenes/metabolism , Luciferases/genetics , Mixed Function Oxygenases/genetics , Multigene Family/genetics , Open Reading Frames/genetics , Biocatalysis , Gene Deletion , Mixed Function Oxygenases/deficiency , Mixed Function Oxygenases/isolation & purification , Mixed Function Oxygenases/metabolism , Streptomyces/enzymology , Streptomyces/genetics , Streptomyces/metabolism
5.
Chembiochem ; 15(5): 749-56, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24554499

ABSTRACT

Mensacarcin, a potential antitumour drug, is produced by Streptomyces bottropensis. The structure consists of a three-membered ring system with many oxygen atoms. Of vital importance in this context is an epoxy moiety in the side chain of mensacarcin. Our studies with different mensacarcin derivatives have demonstrated that this epoxy group is primarily responsible for the cytotoxic effect of mensacarcin. In order to obtain further information about this epoxy moiety, inactivation experiments in the gene cluster were carried out to identify the epoxy-forming enzyme. Therefore the cosmid cos2, which covers almost the complete type II polyketide synthase (PKS) gene cluster, was heterologously expressed in Streptomyces albus. This led to production of didesmethylmensacarcin, due to the fact that methyltransferase genes are missing in the cosmid. Further gene inactivation experiments on this cosmid showed that MsnO8, a luciferase-like monooxygenase, introduces the epoxy group at the end of the biosynthesis of mensacarcin. In addition, the protein MsnO8 was purified, and its crystal structure was determined to a resolution of 1.80 Å.


Subject(s)
Anthracenes/metabolism , Antineoplastic Agents/metabolism , Epoxy Compounds/metabolism , Oxygenases/metabolism , Streptomyces/enzymology , Amino Acid Sequence , Anthracenes/chemistry , Cloning, Molecular , Crystallography, X-Ray , Epoxy Compounds/chemistry , Models, Molecular , Molecular Sequence Data , Multigene Family , Oxygenases/chemistry , Oxygenases/genetics , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Streptomyces/chemistry , Streptomyces/genetics , Streptomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...