Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
2.
Sci Rep ; 13(1): 16315, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770525

ABSTRACT

We evaluated the cost-effectiveness of 2-[18F]FDG-PET/CT compared to CE-CT for response monitoring in metastatic breast cancer (MBC) patients. The study included 300 biopsy-verified MBC patients treated at Odense University Hospital (Denmark). CE-CT was used in 144 patients, 83 patients underwent 2-[18F]FDG-PET/CT, and 73 patients received a combination of both. Hospital resource-based costs (2007-2019) were adjusted to the 2019 level. The incremental cost-effectiveness ratio (ICER) was calculated by comparing average costs per patient and gained survival with CE-CT. During a median follow-up of 33.0 months, patients in the 2-[18F]FDG-PET/CT group had more short admissions (median 6 vs. 2) and fewer overnight admissions (5 vs. 12) compared to the CE-CT group. The mean total cost per patient was €91,547 for CE-CT, €83,965 for 2-[18F]FDG-PET/CT, and €165,784 for the combined group. The ICER for 2-[18F]FDG-PET/CT compared to CE-CT was €-527/month, indicating gaining an extra month of survival at a lower cost (€527). 2-[18F]FDG-PET/CT was more cost-effective in patients with favorable prognostic factors (oligometastatic or estrogen receptor-positive disease), while CE-CT was more cost-effective in poor prognosis patients (liver/lung metastases or performance status ≥ 2 at baseline). In conclusion, our study suggests that 2-[18F]FDG-PET/CT is a cost-effective modality for response monitoring in metastatic breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Cost-Benefit Analysis , Positron-Emission Tomography
3.
BJUI Compass ; 4(5): 513-522, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37636207

ABSTRACT

Background: Prostate-specific membrane antigen (PSMA)-positron emission tomography/contrast-enhanced computed tomography (PET/CT) is a sensitive imaging modality for prostate cancer (PCa). Due to lack of knowledge of the patient benefit, PSMA-PET/CT is not yet recommended in the European guidelines for staging and treatment planning of patients with newly diagnosed PCa. We will investigate the potential difference in progression-free survival (PFS) and quality of life (QoL) of using PSMA-PET/CT versus sodium fluoride (NaF)-PET/CT for staging and treatment planning in patients with newly diagnosed PCa. Study Design: This is a prospective randomised controlled multicentre trial carried out at three centres in the Region of Southern Denmark. Endpoints: The primary endpoint is PFS. Secondary endpoints are residual disease, stage migration, impact on treatment strategies, stage distribution, QoL and diagnostic accuracy measures. Patients and Methods: Patients eligible for the study have newly diagnosed unfavourable intermediate- or high-risk PCa. A total of 448 patients will be randomised 1:1 into two groups: (A) a control group staged with Na[18F]F-PET/CT and (B) an intervention group staged with [18F]PSMA-1007-PET/CT. A subgroup in the intervention group will have a supplementary blinded Na[18F]F-PET/CT performed for the purpose of performing accuracy analyses. QoL will be assessed at baseline and with regular intervals (3-12 months) during the study period. Treatment decisions are achieved at multidisciplinary team conferences based on the results of the respective scans and according to current Danish guidelines. Trial Registration: The Regional Committees on Health Research Ethics for Southern Denmark (S-20190161) and the Danish Medicines Agency (EudraCT Number 2021-000123-12) approved the study, and it has been registered on clinicaltrials.gov (Record 2020110469).

5.
Sci Rep ; 13(1): 5552, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37019987

ABSTRACT

This study aimed to compare CE-CT and 2-[18F]FDG-PET/CT for response monitoring metastatic breast cancer (MBC). The primary objective was to predict progression-free and disease-specific survival for responders vs. non-responders on CE-CT and 2-[18F]FDG-PET/CT. The secondary objective was to assess agreement between response categorization for the two modalities. Treatment response in women with MBC was monitored prospectively by simultaneous CE-CT and 2-[18F]FDG-PET/CT, allowing participants to serve as their own controls. The standardized response evaluation criteria in solid tumors (RECIST 1.1) and PET response criteria in solid tumors (PERCIST) were used for response categorization. For prediction of progression-free and disease-specific survival, treatment response was dichotomized into responders (partial and complete response) and non-responders (stable and progressive disease) at the first follow-up scan. Progression-free survival was defined as the time from baseline until disease progression or death from any cause. Disease-specific survival was defined as the time from baseline until breast cancer-specific death. Agreement between response categorization for both modalities was analyzed for all response categories and responders vs. non-responders. At the first follow-up, tumor response was reported more often by 2-[18F]FDG-PET/CT than CE-CT, with only fair agreement on response categorization between the two modalities (weighted Kappa 0.28). Two-year progression-free survival for responders vs. non-responders by CE-CT was 54.2% vs. 46.0%, compared with 59.1% vs. 14.3% by 2-[18F]FDG-PET/CT. Correspondingly, 2-year disease-specific survival were 83.3% vs. 77.8% for CE-CT and 84.6% vs. 61.9% for 2-[18F]FDG-PET/CT. Tumor response on 2-[18F]FDG-PET/CT was significantly associated with progression-free (HR: 3.49, P < 0.001) and disease-specific survival (HR 2.35, P = 0.008), while no association was found for tumor response on CE-CT. In conclusion, 2-[18F]FDG-PET/CT appears a better predictor of progression-free and disease-specific survival than CE-CT when used to monitor metastatic breast cancer. In addition, we found low concordance between response categorization between the two modalities. TRIAL REGISTRATION: Clinical. TRIALS: gov. NCT03358589. Registered 30/11/2017-Retrospectively registered, http://www. CLINICALTRIALS: gov.


Subject(s)
Breast Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Female , Fluorodeoxyglucose F18 , Prospective Studies , Treatment Outcome , Breast Neoplasms/pathology
6.
Mol Imaging Biol ; 25(4): 720-726, 2023 08.
Article in English | MEDLINE | ID: mdl-36881250

ABSTRACT

PURPOSE: The preferred nuclear medicine method for identification of hyperfunctioning parathyroid glands in hyperparathyroidism (HPT) develops continuously in relation to the technological progress. Diagnostic methods based on PET/CT have during recent years evolved with new tracer possibilities competing with traditional scintigraphic methods. This investigation is a head-to-head comparison of Tc-99m-sestamibi SPECT/CT gamma camera scintigraphy (sestamibi SPECT/CT) and C-11-L-methionin PET/CT imaging (methionine PET/CT) for preoperative identification of hyperfunctioning parathyroid glands. PROCEDURES: The study is a prospective cohort study including 27 patients diagnosed with primary hyperparathyroidism (PHPT). Two nuclear medicine physicians assessed all examinations independently and blinded. All scanning assessments were matched to the final surgical diagnosis as confirmed by histopathology. Biochemical monitoring of the therapeutical effects was performed preoperatively by PTH-measurements and followed postoperatively for up to 12 months. Comparisons were made for differences in sensitivity and positive predictive value (PPV). RESULTS: Twenty-seven patients (18 females, 9 males; mean age (range): 58.9 years (34.1-79)) were enrolled into the study. The 27 patients had a total of 33 identified sites of lesions of which 28 (85%) turned out to be histopathological verified hyperfunctioning parathyroid glands. The sensitivity and PPV for sestamibi SPECT/CT were 0.71 and 0.95; that of methionine PET/CT was 0.82 and 1, respectively. Both sensitivity and PPV were slightly lower for sestamibi SPECT/CT than for methionine PET PET/CT (-0.11, 95% confidence interval (95% CI): -0.29 to 0.08; -0.05, 95% CI: -0.14 to 0.04, respectively), but not to a statistically significant extent (p=0.38 and p=0.31). The sensitivity and PPV for diagnostic CT were 0.64 (95% CI: 0.44 to 0.81) and 1 (95% CI: 0.81 to 1). CONCLUSIONS: Methionine PET/CT performed comparable to sestamibi SPECT/CT with respect to identification and localization of hyperfunctioning parathyroid glands prior to surgery.


Subject(s)
Hyperparathyroidism, Primary , Positron Emission Tomography Computed Tomography , Male , Female , Humans , Carbon Radioisotopes , Hyperparathyroidism, Primary/diagnostic imaging , Hyperparathyroidism, Primary/surgery , Hyperparathyroidism, Primary/pathology , Prospective Studies , Technetium Tc 99m Sestamibi , Radionuclide Imaging , Tomography, X-Ray Computed , Radiopharmaceuticals , Tomography, Emission-Computed, Single-Photon , Organotechnetium Compounds , Methionine , Racemethionine , Nitriles
7.
J Bone Miner Res ; 38(5): 639-649, 2023 05.
Article in English | MEDLINE | ID: mdl-36970780

ABSTRACT

Multiple myeloma (MM) is an incurable bone marrow cancer characterized by the development of osteolytic lesions due to the myeloma-induced increase in osteoclastogenesis and decrease in osteoblastic activity. The standard treatment of MM often involves proteasome inhibitors (PIs), which can also have a beneficial off-target bone anabolic effect. However, long-term treatment with PIs is unadvised due to their high side-effect burden and inconvenient route of administration. Ixazomib is a new-generation, oral PI that is generally well tolerated; however, its bone effect remains unknown. Here, we describe the 3-month results of a single-center phase II clinical trial investigating the effect of ixazomib treatment on bone formation and bone microstructure. Thirty patients with MM in stable disease not receiving antimyeloma treatment for ≥3 months and presenting ≥2 osteolytic lesions received monthly ixazomib treatment cycles. Serum and plasma samples were collected at baseline and monthly thereafter. Sodium 18 F-Fluoride positron emission tomography (NaF-PET) whole-body scans and trephine iliac crest bone biopsies were collected before and after three treatment cycles. The serum levels of bone remodeling biomarkers suggested an early ixazomib-induced decrease in bone resorption. NaF-PET scans indicated unchanged bone formation ratios; however, histological analyses of bone biopsies revealed a significant increase in bone volume per total volume after treatment. Further analyses of bone biopsies showed unchanged osteoclast number and COLL1A1High -expressing osteoblasts on bone surfaces. Next, we analyzed the superficial bone structural units (BSUs), which represent each recent microscopic bone remodeling event. Osteopontin staining revealed that following treatment, significantly more BSUs were enlarged (>200,000 µm2 ), and the distribution frequency of their shape was significantly different from baseline. Overall, our data suggest that ixazomib induces overflow remodeling-based bone formation by decreasing the level of bone resorption and promoting longer bone formation events, making it a potentially valuable candidate for future maintenance treatment. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Resorption , Multiple Myeloma , Humans , Multiple Myeloma/diagnostic imaging , Multiple Myeloma/drug therapy , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Boron Compounds/adverse effects , Bone Resorption/drug therapy
8.
Cancers (Basel) ; 14(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35406453

ABSTRACT

Sparse data exist on immune checkpoint inhibition (ICI) in NSCLC patients with brain metastasis (BM), especially for those with no local therapy (LT) (whole brain radiation therapy (WBRT), stereotactic RT (SRT) or neurosurgery) preceding ICI. Our aims were to investigate the prevalence of BM, rate of intracranial response (ICR), and survival and quality of life (QoL) in real-life patients with advanced NSCLC undergoing palliative ICI. This was a prospective non-randomized study (NCT03870464) with magnetic resonance imaging of the brain (MR-C) performed at baseline resulting in a clinical decision to administer LT or not. ICR evaluation (MR-C) at week 8-9 (mRECIST criteria) for group A (LT) and group B (untreated) was assessed. Change in QoL was assessed using EQ-5D-5L. Of 159 included patients, 45 (28%) had baseline BM. Median follow-up was 23.2 months (IQR 16.4-30.2). Of patients in group A (21) and B (16), 16/37 (43%) had symptomatic BM. ICR was 8/21, 38% (complete or partial response) for group A versus 8/16, 50% for group B. No statistical difference in median overall survival of patients with BM (group A: 12.3 (5.2-NR), group B: 20.5 months (4.9-NR)) and without (22.4 months (95% 16.2-26.3)) was obtained. Baseline QoL was comparable regardless of BM, but an improved QoL (at week 9) was found in those without BM. Patients with NSCLC and BM receiving ICI had long-term survival comparable to those without BM.

9.
Br J Cancer ; 126(9): 1271-1279, 2022 05.
Article in English | MEDLINE | ID: mdl-35013575

ABSTRACT

BACKGROUND: We compared overall survival for metastatic breast cancer (MBC) patients monitored with CE-CT, FDG-PET/CT or a combination of them in an observational setting. METHODS: Patients with biopsy-verified (recurrent or de novo) MBC (n = 300) who were treated at Odense university hospital (Denmark) and response monitored with FDG-PET/CT (n = 83), CE-CT (n = 144), or a combination of these (n = 73) were followed until 2019. Survival was compared between the scan groups, and were adjusted for clinico-histopathological variables representing potential confounders in a Cox proportional-hazard regression model. RESULTS: The study groups were mostly comparable regarding baseline characteristics, but liver metastases were reported more frequently in CE-CT group (38.9%) than in FDG-PET/CT group (19.3%) and combined group (24.7%). Median survival was 30.0 months for CE-CT group, 44.3 months for FDG-PET/CT group and 54.0 months for Combined group. Five-year survival rates were significantly higher for FDG-PET/CT group (41.9%) and combined group (43.3%), than for CE-CT group (15.8%). Using the CE-CT group as reference, the hazard ratio was 0.44 (95% CI: 0.29-0.68, P = 0.001) for the FDG-PET/CT group after adjusting for baseline characteristics. FDG-PET/CT detected the first progression 4.7 months earlier than CE-CT, leading to earlier treatment change. CONCLUSIONS: In this single-center, observational study, patients with metastatic breast cancer who were response monitored with FDG-PET/CT alone or in combination with CE-CT had longer overall survival than patients monitored with CE-CT alone. Confirmation of these findings by further, preferably randomised clinical trials is warranted.


Subject(s)
Breast Neoplasms , Fluorodeoxyglucose F18 , Breast Neoplasms/pathology , Female , Humans , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Radiopharmaceuticals , Survival Rate
10.
EJNMMI Res ; 11(1): 93, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34553294

ABSTRACT

BACKGROUND: [18F]-fluorodeoxyglucose-positron emission tomography/computed tomography ([18F]FDG-PET/CT) has been implemented sporadically in hospital settings as the standard of care examination for recurrent breast cancer. We aimed to explore the clinical impact of implementing [18F]FDG-PET/CT for patients with clinically suspected recurrent breast cancer and validate the diagnostic accuracy. METHODS: Women with suspected distant recurrent breast cancer were prospectively enrolled in the study between September 2017 and August 2019. [18F]FDG-PET/CT was performed, and the appearance of incidental benign and malignant findings was registered. Additional examinations, complications, and the final diagnosis were registered to reflect the clinical consequence of such findings. The diagnostic accuracy of [18F]FDG-PET/CT as a stand-alone examination was analyzed. Biopsy and follow-up were used as a reference standard. RESULTS: [18F]FDG-PET/CT reported breast cancer metastases in 72 of 225 women (32.0%), and metastases were verified by biopsy in 52 (52/225, 23.1%). Prior probability and posterior probability of a positive test for suspected metastatic cancer and incidental malignancies were 27%/85% and 4%/20%, respectively. Suspected malignant incidental findings were reported in 46 patients (46/225, 20.4%), leading to further examinations and final detection of nine synchronous cancers (9/225, 4.0%). These cancers originated from the lung, thyroid, skin, pancreas, peritoneum, breast, kidney, one was malignant melanoma, and one was hematological cancer. False-positive incidental malignant findings were examined in 37/225 patients (16.4%), mainly in the colon (n = 12) and thyroid gland (n = 12). Ten incidental findings suspicious for benign disease were suggested by [18F]FDG-PET/CT, and further examinations resulted in the detection of three benign conditions requiring treatment. Sensitivity, specificity, and AUC-ROC for diagnosing distant metastases were 1.00 (0.93-1.0), 0.88 (0.82-0.92), and 0.98 (95% CI 0.97-0.99), respectively. CONCLUSION: [18F]FDG-PET/CT provided a high posterior probability of positive test, and a negative test was able to rule out distant metastases in women with clinically suspected recurrent breast cancer. One-fifth of patients examined for incidental findings detected on [18F]FDG-PET/CT were diagnosed with clinically relevant conditions. Further examinations of false-positive incidental findings in one of six women should be weighed against the high accuracy for diagnosing metastatic breast cancer. Trial registration Clinical.Trials.gov. NCT03358589. Registered 30 November 2017-Retrospectively registered, http://www.ClinicalTrials.gov.

11.
Cancers (Basel) ; 13(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34439232

ABSTRACT

We compared response categories and impacts on treatment decisions for metastatic breast cancer (MBC) patients that are response-monitored with contrast-enhanced computed-tomography (CE-CT) or fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT). A comparative diagnostic study was performed on MBC patients undergoing response monitoring by CE-CT (n = 34) or FDG-PET/CT (n = 31) at the Odense University Hospital (Denmark). The responses were assessed visually and allocated into categories of complete response (CR/CMR), partial response (PR/PMR), stable disease (SD/SMD), and progressive disease (PD/PMD). Response categories, clinical impact, and positive predictive values (PPV) were compared for follow-up scans. A total of 286 CE-CT and 189 FDG-PET/CT response monitoring scans were performed. Response categories were distributed into CR (3.8%), PR (8.4%), SD (70.6%), PD (15%), and others (2.1%) by CE-CT and into CMR (22.2%), PMR (23.8%), SMD (31.2%), PMD (18.5%), and others (4.4%) by FDG-PET/CT, revealing a significant difference between the groups (P < 0.001). PD and PMD caused changes of treatment in 79.1% and 60%, respectively (P = 0.083). PPV for CE-CT and FDG-PET/CT was 0.85 (95% CI: 0.72-0.97) and 0.70 (95% CI: 0.53-0.87), respectively (P = 0.17). FDG-PET/CT indicated regression of disease more frequently than CE-CT, while CE-CT indicated stable disease more often. FDG-PET/CT seems to be more sensitive than CE-CT for monitoring response in metastatic breast cancer.

12.
Radiother Oncol ; 160: 40-46, 2021 07.
Article in English | MEDLINE | ID: mdl-33848564

ABSTRACT

BACKGROUND AND PURPOSE: Tumour growth during radiotherapy may lead to geographical misses of the target volume. This study investigates the evolution of the tumour extent and evaluates the need for plan adaptation to ensure dose coverage of the target in glioblastoma patients. MATERIALS AND METHODS: The prospective study included 29 patients referred for 59.4 Gy in 33 fractions. Magnetic resonance imaging (MRI) was performed at the time of treatment planning, at fraction 10, 20, 30, and three weeks after the end of radiotherapy. The gross tumour volume (GTV) was defined as the T1w contrast-enhanced region plus the surgical cavity on each MRI set. The relative GTV volume and the maximum distance (Dmax) of the extent of the actual GTV outside the original GTV were measured. Based on the location of the actual GTV during radiotherapy and the original planned dose, a prospective clinical decision was made whether to adapt the treatment. RESULTS: Dose coverage of the GTV during radiotherapy was not compromised, and none of the radiotherapy plans was adapted. The median Dmax (range) was 5.7 (2.0-18.9) mm, 8.0 (2.0-27.4) mm, 8.0 (1.9-27.3) mm, and 8.9 (1.9-34.4) mm at fraction 10, 20, 30, and follow-up. The relative GTV volume and Dmax observed at fraction 10 were correlated with the values observed at follow-up (R = 0.74, p < 0.001 and R = 0.79, p < 0.001, respectively). CONCLUSION: Large variations in the GTV extent were observed, and changes often occurred early in the treatment. Plan adaptation for geographical misses was not performed in our cohort due to sufficient CTV margins.


Subject(s)
Glioblastoma , Radiotherapy, Conformal , Glioblastoma/diagnostic imaging , Glioblastoma/radiotherapy , Humans , Magnetic Resonance Imaging , Prospective Studies , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Tumor Burden
13.
Cancers (Basel) ; 12(8)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751464

ABSTRACT

The lytic bone disease is a hallmark of multiple myeloma, being present in about 80% of patients with newly diagnosed MM, and in more during the disease course. The myeloma associated bone disease (MBD) severely affects the morbidity and quality of life of the patients. MBD defines treatment demanding MM. In recent years, knowledge of the underlying pathophysiology has increased, and novel imaging technologies, medical and non-pharmaceutical treatments have improved. In this review, we highlight the major achievements in understanding, diagnosing and treating MBD. For diagnosing MBD, low-dose whole-body CT is now recommended over conventional skeletal survey, but also more advanced functional imaging modalities, such as diffusion-weighted MRI and PET/CT are increasingly important in the assessment and monitoring of MBD. Bisphosphonates have, for many years, played a key role in management of MBD, but denosumab is now an alternative to bisphosphonates, especially in patients with renal impairment. Radiotherapy is used for uncontrolled pain, for impeding fractures and in treatment of impeding or symptomatic spinal cord compression. Cement augmentation has been shown to reduce pain from vertebral compression fractures. Cautious exercise programs are safe and feasible and may have the potential to improve the status of patients with MM.

14.
Radiology ; 291(1): 5-13, 2019 04.
Article in English | MEDLINE | ID: mdl-30806604

ABSTRACT

Acknowledging the increasingly important role of whole-body MRI for directing patient care in myeloma, a multidisciplinary, international, and expert panel of radiologists, medical physicists, and hematologists with specific expertise in whole-body MRI in myeloma convened to discuss the technical performance standards, merits, and limitations of currently available imaging methods. Following guidance from the International Myeloma Working Group and the National Institute for Clinical Excellence in the United Kingdom, the Myeloma Response Assessment and Diagnosis System (or MY-RADS) imaging recommendations are designed to promote standardization and diminish variations in the acquisition, interpretation, and reporting of whole-body MRI in myeloma and allow response assessment. This consensus proposes a core clinical protocol for whole-body MRI and an extended protocol for advanced assessments. Published under a CC BY 4.0 license. Online supplemental material is available for this article.


Subject(s)
Multiple Myeloma/diagnosis , Practice Guidelines as Topic , Consensus , Data Collection , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Research Design , Whole Body Imaging/methods , Whole Body Imaging/standards
15.
Acta Oncol ; 56(6): 874-878, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28464749

ABSTRACT

BACKGROUND: Delineation accuracy of the gross tumor volume (GTV) in radiotherapy planning for head and neck (H&N) cancer is affected by computed tomography (CT) artifacts from metal implants which obscure identification of tumor as well as organs at risk (OAR). This study investigates the impact of metal artifact reduction (MAR) in H&N patients in terms of delineation consistency and dose calculation precision in radiation treatment planning. MATERIAL AND METHODS: Tumor and OAR delineations were evaluated in planning CT scans of eleven oropharynx patients with streaking artifacts in the tumor region preceding curative radiotherapy (RT). The GTV-tumor (GTV-T), GTV-node and parotid glands were contoured by four independent observers on standard CT images and MAR images. Dose calculation was evaluated on thirty H&N patients with dental implants near the treated volume. For each patient, the dose derived from the clinical treatment plan using the standard image set was compared with the recalculated dose on the MAR image dataset. RESULTS: Reduction of metal artifacts resulted in larger volumes of all delineated structures compared to standard reconstruction. The GTV-T and the parotids were on average 22% (p < 0.06) and 7% larger (p = 0.005), respectively, in the MAR image plan compared to the standard image plan. Dice index showed reduced inter-observer variations after reduction of metal artifacts for all structures. The average surface distance between contours of different observers improved using the MAR images for GTV and parotids (p = 0.04 and p = 0.01). The median volume receiving a dose difference larger than ±3% was 2.3 cm3 (range 0-32 cm3). CONCLUSIONS: Delineation of structures in the head and neck were affected by metal artifacts and volumes were generally larger and more consistent after reduction of metal artifacts, however, only small changes were observed in the dose calculations.


Subject(s)
Artifacts , Head and Neck Neoplasms/radiotherapy , Image Processing, Computer-Assisted/methods , Metals , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Head and Neck Neoplasms/diagnostic imaging , Humans , Organs at Risk/radiation effects , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
16.
Radiother Oncol ; 123(1): 93-98, 2017 04.
Article in English | MEDLINE | ID: mdl-28259449

ABSTRACT

BACKGROUND AND PURPOSE: The present study investigates the extent and appearance of radiologic injury in the lung after radiotherapy for non-small cell lung cancer (NSCLC) patients and correlates radiologic response with clinical and dosimetric factors. METHODS AND MATERIALS: Eligible follow-up CT scans acquired up to six months after radiotherapy were evaluated for radiologic injuries in 220 NSCLC patients. Radiologic injuries were divided into three categories: (1) interstitial changes, (2) ground-glass opacity, or (3) consolidation. The relationship between the fraction of injured lung of each category and clinical or dosimetric factors was investigated. RESULTS: Radiological injuries of category 1-3 were found in 67%, 52%, and 51% of the patients, and the mean (and maximum) fraction of injured lung was 4.4% (85.9%), 2.4% (46.0%), and 2.1% (22.9%), respectively. Traditional lung dose metrics and time to follow-up predicted lung injury of all categories. Older age increased the risk of interstitial changes and current smoking reduced the risk of consolidation in the lung. CONCLUSION: Radiologic injuries were frequently found in follow-up CT scans after radiotherapy for NSCLC patients. The risk of a radiologic response increased with increasing time and lung dose metrics, and depended on patient age and smoking status.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Injury/etiology , Lung Neoplasms/radiotherapy , Radiation Injuries/etiology , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Female , Humans , Lung/radiation effects , Lung Neoplasms/diagnostic imaging , Male , Middle Aged , Radiosurgery/methods
17.
Am J Nucl Med Mol Imaging ; 4(2): 193-201, 2014.
Article in English | MEDLINE | ID: mdl-24753985

ABSTRACT

The aim was to investigate the performance of (18)F-fluorodeoxyglucose PET/CT to rule out malignancy in patients with confirmed vocal cord palsy (VCP). Between January 2011 and June 2013, we retrospectively included consecutive patients referred to PET/CT with paresis or paralysis of one or both vocal cords. PET/CT results were compared to clinical workup and histopathology. The study comprised 65 patients (32 females) with a mean age of 66±12 years (range 37-89). Eleven patients (17%) had antecedent cancer. Twenty-seven (42%) were diagnosed with cancer during follow-up. The palsy was right-sided in 24 patients, left-sided in 37, and bilateral in 4. Median follow-up was 7 months (interquartile range 4-11 months). Patients without cancer were followed for at least three months. PET/CT suggested a malignancy in 35 patients (27 true positives, 8 false positives) and showed none in 30 (30 true negatives, 0 false negatives). Thus, the sensitivity, specificity, positive and negative predictive values, and accuracy were (95% confidence intervals in parenthesis): 100% (88%-100%), 79% (64%-89%), 77% (61%-88%), 100% (89%-100%), and 88% (78%-94%), respectively. Sixteen patients had palliative treatment, while 11 were treated with curative intent, emphasising the severity of VCP and the need for a rapid and accurate diagnostic work-up. In this retrospective survey, biopsy proven malignancy (whether newly diagnosed or relapsed) was the cause of VCP in almost half of patients (42%). PET/CT had a high sensitivity (100%) with a relatively high false positive rate, but was excellent in ruling out malignancy (negative predictive value 100%).

SELECTION OF CITATIONS
SEARCH DETAIL
...