Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(40): 25992-26010, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36199611

ABSTRACT

2D transition metal dichalcogenide MoS2 monolayer quantum dots (MoS2-QD) and their doped boron (B@MoS2-QD), nitrogen (N@MoS2-QD), phosphorus (P@MoS2-QD), and silicon (Si@MoS2-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH3 gas. The results from electronic properties showed that P@MoS2-QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS2-QD surface, signifying the preferred chemisorption surface for NH3 detection. The mechanistic studies provided in this study also indicate that the P@MoS2-QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS2 dopants, specifically the P@MoS2-QD surface, as a promising candidate for sensors to detect gas.

3.
J Mol Model ; 28(9): 245, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35927595

ABSTRACT

The manipulation of the active dye material for application in dye-sensitized solar cell (DSSC) using simple or bulky group substituents is necessary for improved dye performance. Herein, we carried out a combined experimental and theoretical studies of different alkylated novel reactive (E)-6-(2,3-dihydroxyl naphthalene diazinyl)-1H-benzoisoquinoline-1,3-dione azo-based dyes using spectral (FTIR, UV-visible, and NMR) analysis and electronic structure theory method based first principle density functional theory (DFT) calculations to investigate the molecular electronic properties, structural analysis, excitation behavior, and the theoretical potential application in photovoltaic cell. The synthesized azo dye (azoD) was theoretically modeled by varying the number of alkyl chains denoted as AzoD1, AzoD2, AzoD3, and AzoD4 to represent azo dyes having ten (10), twelve (12), fourteen (14), and sixteen (16) alkyl chain length respectively. From the natural bond orbital (NBO) analysis, the higher stabilization energies, 227.80 and 227.77 kcal/mol respectively, recorded for AzoD1 and AzoD4 may be due to extra orbital contribution by π*(N21-N22) to π*C54-C56 31.19 eV for AzoD1 and π*(N21-N22) → π*(C53-C55) 31.43 eV AzoD4 confirming that chain length affected the orbital interaction of the molecules. The driving force (ΔGinject) of electron injection into the TiO2 surface (- 1.92 to - 1.93) shown in this study is indicative that alkylated azo dyes are good for improved DSSCs performance. Again, the open circuit voltage (Voc) of 1.090 (AzoD1), 1.092 (AzoD2), 1.093 (AzoD3), and 1.095 (AzoD4) are also evidence of the suitability of azo dyes as photosensitizers. All the spectroscopic analysis, FTIR, UV-visible, and NMR combined with theoretical calculations, provided accurate data for characterizing the titled azo dye compound and showed that it has good photophysical properties. The presence of alkyl groups and chain length promoted the stability of the dyes thereby making them suitable for application in DSSCs. Increase in chain length as well enhanced the electron injection into the conduction band of the semiconductor.

4.
J Fluoresc ; 32(3): 1005-1017, 2022 May.
Article in English | MEDLINE | ID: mdl-35247130

ABSTRACT

Spectroscopic (FT-IR, FT-Raman, UV-vis, and NMR) techniques have been extensively used for structural elucidation of compounds along with the study of geometrical and vibrational properties. Herein, 2-acetyl-5-methylfuran, a derivative of furan, was experimentally characterized and analyzed in details using FT-IR, FT-Raman, UV-vis, and 1H NMR spectroscopic techniques conducted in different solvents. The experimentally analyzed spectral results were carefully compared with theoretical values obtained using density functional theory (DFT) calculations at the B3LYP/6-311 + + G (d, p) method to support, validate, and provide more insights on the structural characterizations of the titled compound. The correlated experimental and theoretical structural vibrational assignments along with their potential energy distributions (PEDs) and all the spectroscopic spectral investigations of the titled structure were observed to be in good agreements with calculated results.

5.
J Mol Model ; 27(10): 284, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34515856

ABSTRACT

There have been numerous attempts for the theoretical design of a better donor-[Formula: see text]-acceptor structural framework with improved absorption and emission properties. However, for effective dye designing, it is necessary to understand the electronic and photophysical properties of the dye systems. In this work, we report a detailed density functional theory (DFT) and time-dependent density functional theory (TD-DFT) investigations of the excited state characteristics and the influence of various groups (-HCO, =CH2, (-CH3)2, (HCO)2, and (-OCH3)2) attached to the donor group (-NH2) in a p-nitroaniline D-[Formula: see text]-A system which are symbolized respectively as p-nitroaniline (A), N,N-dimethylnitroaniline (A2), N,N-dicarbonylnitroaniline (A3), N-methylenenitroaniline (A4), and N,N-dimethoxynitroaniline (A5). The first principles DFT and TD-DFT calculations from the ground state (S0) to the first five excited states: (S0→S1), (S0→S2), (S0→S3), (S0→S4), and (S0→S5) were utilized to explore the reactivity of D-[Formula: see text]-A system using the conceptual DFT approach, characterization of electron excitation using the hole-electron analysis, visual study of the various real space functions in the hole-electron framework, density of states (DOS), measurement of charge transfer (CT) length of electron excitation ([Formula: see text]), measurement of the overlapping degrees of hole and electron of electron excitation ([Formula: see text]), interfragment charge transfer (IFCT) during electron excitation, and the second-order perturbation energy analysis from the natural bond orbitals (NBO) computation. Results of the excitation studies show that all the studied compounds exhibited an n→[Formula: see text]* localized type for first excitations (S0→S1) on -NO2 group in A, A2, A4, and A5 and -NCl2 in A3. [Formula: see text]→[Formula: see text]* charge transfer excitations were confirmed for S0→S2/S4/S5 in A and A2, S0→S3/S4/S5 in A3 and A5, and S0→S4/S5 in A4. The NBO second-order perturbation energy analysis suggest that the most significant hyperconjugative interactions were [Formula: see text] (54.43kcal/mol), [Formula: see text] (40.82kcal/mol), [Formula: see text] (11.67kcal/mol), [Formula: see text] (29.52kcal/mol), [Formula: see text] (11.55kcal/mol), [Formula: see text] (23.40kcal/mol), and [Formula: see text] (24.88kcal/mol) [Formula: see text](24.64kcal/mol), which respectively corresponds to the A, A2, A3, A4, and A5 D-[Formula: see text]-A systems under investigation, and these strong interactions stabilize the systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...