Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(3): e202212934, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36266975

ABSTRACT

Aesthetic designs from nature enable new knowledge to be gained and, at the same time, inspire scientific models. In this context, multicomponent macrocycles embody the advantage of precisely positioning the structural units to achieve efficient communication between them. However, the construction of a functionalizable macrocycle for ultrafast charge separation and stabilization has not been attempted. Herein, we report the synthesis, crystal structure, and transient absorption of a new functionalizable macrocycle consisting of an oligothiophene-ring-strapped perylene bisimide. Transient absorption results point to a sequential improvement in charge separation and stabilization from the macrocycle to the corresponding linear dimer and 2D polymer due to the unique design. Our macrocycle design with a supportive spatial arrangement of the donor and acceptor units will inspire the development of more complex synthetic systems with exciting electron-transfer and charge-separation features.

2.
Chem Asian J ; 17(24): e202201012, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36316986

ABSTRACT

In the current scenario of increased pollution and releasing toxic gases by burning petroleum products, switching to natural gas is more promising for reducing CO2 emissions and air pollutants. Hence, research on Liquefied Natural Gas and Compressed Natural Gas is gaining more value. However, natural gas primarily consists of CH4 , which has less energy density than conventional fuels. Interestingly, since the C-H ratio of CH4 gas is 1 : 4, it is easily combustible, gives less carbon footprint, and reduces unburnt hydrocarbon pollution. Hence, research on storing and transporting CH4 has utmost importance, and porous materials are one of the suitable candidates for storing CH4 . Herein we report the scalable synthesis of highly porous and crystalline covalent organic frameworks for storing CH4 at room temperature and pressure. Two COFs, namely, Tp-Azo and Tp-Azo-BD(Me)2 , synthesized in 1 kg at ∼45 g batch scale using a Planetary mixer, displayed a maximum BET surface area of around 3345 m2 /g, and 2342 m2 /g and CH4 storage of 174.10 cc/cc and 151 cc/cc, respectively. A comparison of the CH4 sorption of Tp-Azo and Tp-Azo-BD(Me)2 COFs synthesized in different batches has a variation of only ±5 cc/cc and shows the consistency in bulk scale synthesis of COFs. The cyclic equilibrium CH4 adsorption studies showed the COFs are stable with consistent CH4 adsorption and desorption cycles. The present study is a step towards the scalable mechanochemical synthesis of COFs for gas storage applications.

3.
Chem Commun (Camb) ; 58(12): 1998-2001, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35048089

ABSTRACT

Solvent-free organic liquids are well-known for their excellent luminescence features. Hence, the recent developments in this area have marked them as potential emitters with high quantum yield and enhanced processability. The support of an available liquid matrix enables doping to deliver hybrid liquids with intriguing luminescence features. In this direction, we report solvent-free liquid donor-acceptor pairs with exciplex emission and room temperature phosphorescence at very low acceptor loading. The underlying weak intermolecular interactions have been revealed by 2D NMR techniques and theoretical calculations. The formation of large-area thin films by exciplex and phosphorescent liquid hybrids will encourage the development of scalable lighting and display materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...