Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 6(1): e03213, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31970305

ABSTRACT

Gastrointestinal colonisation by commensal microbiota is essential for the health and well-being of the host. We aimed to evaluate the influence of a reduced bacterial load environment on microbiota development and maturation, and the possibility of targeted colonisation via at-hatch administration of a selected bacterial strain. Japanese quail (Coturnix japonica) were inoculated within 1 h of hatch with a freshly grown culture of a Lactobacillus agilis isolate derived from a healthy adult quail. Hatchlings were kept in a mouse isolator for one week and then housed between one and four weeks of age, with a flock of normally grown adult quail to expose the bacteria-restricted birds to normal commensal quail bacteria. The bacterial isolate used to inoculate the birds was found to completely dominate the microbiota of the intestine of L.agilis at-hatch inoculated birds. Despite 3 weeks of co-housing of the test birds with an adult flock harbouring normal rich gut microbiota, neither the Lactobacillus inoculated nor PBS inoculated birds reached the level of bacterial diversity seen in birds raised under normal conditions. Neither PBS nor Lactobacillus inoculated birds were able to adopt normal quail microbiota after one week of restricted exposure to bacteria, indicating that contact with diverse microbiota during the early days of gut development in birds is critical for the establishment of healthy intestinal community. Very early intervention in the form of a suitable bacterial probiotic inoculant immediately post-hatch protected birds grown in extreme hygiene conditions from developing anomalous gut microbiota and intestinal damage. Our data shows that it is possible to induce dominance of desired strain using simple timed manipulation.

2.
Anim Nutr ; 4(4): 378-387, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30564757

ABSTRACT

The Japanese quail (Coturnix japonica) are popular both as an alternative protein source and as a model of choice for scientific research in several disciplines. There is limited published information on the histological features of the intestinal tract of Japanese quail. The only comprehensive reference is a book published in 1969. This study aims to fill that niche by providing a reference of general histological features of the Japanese quail, covering all the main sections of the intestinal tract. Both light and scanning electron microscope (SEM) images are presented. Results showed that the Japanese quail intestinal tract is very similar to that of the chicken with the exception of the luminal koilin membrane of the gizzard. Scanning electron microscopic photomicrographs show that in the Japanese quail koilin vertical rods are tightly packed together in a uniform manner making a carpet-like appearance. This differs in chicken where the conformations of vertical rods are arranged in clusters.

3.
Appl Microbiol Biotechnol ; 100(9): 4201-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26758298

ABSTRACT

Microbiota in the gastrointestinal tract (GIT) plays an essential role in the health and well-being of the host. With the exception of chickens, this area has been poorly studied within birds. The avian GIT harbours unique microbial communities. Birds require rapid energy bursts to enable energy-intensive flying. The passage time of feed through the avian GIT is only 2-3.5 h, and thus requires the presence of microbiota that is extremely efficient in energy extraction. This investigation has used high-throughput 16S rRNA gene sequencing to explore the GIT microbiota of the flighted bird, the Japanese quail (Coturnix japonica). We are reporting, for the first time, the diversity of bacterial phylotypes inhabiting all major sections of the quail GIT including mouth, esophagus, crop, proventriculus, gizzard, duodenum, ileum, cecum, large intestine and feces. Nine phyla of bacteria were found in the quail GIT; however, their distribution varied significantly between GIT sections. Cecal microbiota was the most highly differentiated from all the other communities and showed highest richness at an OTU level but lowest richness at all other taxonomic levels being comprised of only 15 of total 57 families in the quail GIT. Differences were observed in the presence and absence of specific phylotypes between sexes in most sections.


Subject(s)
Coturnix/microbiology , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Animals , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
Anim Reprod Sci ; 74(3-4): 151-62, 2002 Dec 16.
Article in English | MEDLINE | ID: mdl-12417117

ABSTRACT

The ability of gonadotrophin releasing hormone (GnRH) agonist implants to suppress ovarian activity and prevent pregnancies, long-term, was examined in heifers and cows maintained under extensive management. At three cattle stations, heifers (2-year-old) and older cows (3- to 16-year-old) were assigned to a control group that received no treatment, or were treated with high-dose (12 mg, Station A) or low-dose (8 mg, Station B and Station C) GnRH agonist implants. The respective numbers of control and GnRH agonist-treated animals (heifers + cows) at each station were: Station A, 20 and 99; Station B, 19 and 89; Station C, 20 and 76. Animals were maintained with 4% bulls and monitored for pregnancy at 2-monthly intervals for approximately 12 months. Pregnancy rates for control heifers and control cows ranged from 60-90% and 80-100%, respectively, depending on the study site. The respective number of animals (heifers + cows) treated with GnRH agonist that conceived, and days to first conception, were: Station A, 9 (9%) and 336 +/- 3 days; Station B, 8 (10%) and 244 +/- 13 days; Station C, 20 (26%) and 231 +/- 3 days. Treatment with high-dose GnRH agonist prevented pregnancies for longer (approximately 300 days) than treatment with low-dose GnRH agonist (approximately 200 days). In the majority of heifers and cows treated with GnRH agonist, ovarian follicular growth was restricted to early antral follicles (2-4mm). The findings indicate that GnRH agonist implants have considerable potential as a practical technology to suppress ovarian activity and control reproduction in female cattle maintained in extensive rangelands environments. The technology also has broader applications in diverse cattle production systems.


Subject(s)
Cattle/physiology , Contraceptive Agents, Female/pharmacology , Fertility/drug effects , Triptorelin Pamoate/pharmacology , Animal Husbandry/methods , Animals , Australia , Body Weight , Contraceptive Agents, Female/administration & dosage , Drug Implants , Female , Male , Ovarian Follicle/drug effects , Pregnancy , Random Allocation , Seasons , Triptorelin Pamoate/administration & dosage , Triptorelin Pamoate/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...