Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Chem Biol ; 19(4): 938-952, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38565185

ABSTRACT

Phenotypic assays have become an established approach to drug discovery. Greater disease relevance is often achieved through cellular models with increased complexity and more detailed readouts, such as gene expression or advanced imaging. However, the intricate nature and cost of these assays impose limitations on their screening capacity, often restricting screens to well-characterized small compound sets such as chemogenomics libraries. Here, we outline a cheminformatics approach to identify a small set of compounds with likely novel mechanisms of action (MoAs), expanding the MoA search space for throughput limited phenotypic assays. Our approach is based on mining existing large-scale, phenotypic high-throughput screening (HTS) data. It enables the identification of chemotypes that exhibit selectivity across multiple cell-based assays, which are characterized by persistent and broad structure activity relationships (SAR). We validate the effectiveness of our approach in broad cellular profiling assays (Cell Painting, DRUG-seq, and Promotor Signature Profiling) and chemical proteomics experiments. These experiments revealed that the compounds behave similarly to known chemogenetic libraries, but with a notable bias toward novel protein targets. To foster collaboration and advance research in this area, we have curated a public set of such compounds based on the PubChem BioAssay dataset and made it available for use by the scientific community.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Small Molecule Libraries , Drug Discovery/methods , High-Throughput Screening Assays/methods , Cheminformatics/methods , Small Molecule Libraries/chemistry , Structure-Activity Relationship
2.
Nat Protoc ; 18(7): 1981-2013, 2023 07.
Article in English | MEDLINE | ID: mdl-37344608

ABSTRACT

In image-based profiling, software extracts thousands of morphological features of cells from multi-channel fluorescence microscopy images, yielding single-cell profiles that can be used for basic research and drug discovery. Powerful applications have been proven, including clustering chemical and genetic perturbations on the basis of their similar morphological impact, identifying disease phenotypes by observing differences in profiles between healthy and diseased cells and predicting assay outcomes by using machine learning, among many others. Here, we provide an updated protocol for the most popular assay for image-based profiling, Cell Painting. Introduced in 2013, it uses six stains imaged in five channels and labels eight diverse components of the cell: DNA, cytoplasmic RNA, nucleoli, actin, Golgi apparatus, plasma membrane, endoplasmic reticulum and mitochondria. The original protocol was updated in 2016 on the basis of several years' experience running it at two sites, after optimizing it by visual stain quality. Here, we describe the work of the Joint Undertaking for Morphological Profiling Cell Painting Consortium, to improve upon the assay via quantitative optimization by measuring the assay's ability to detect morphological phenotypes and group similar perturbations together. The assay gives very robust outputs despite various changes to the protocol, and two vendors' dyes work equivalently well. We present Cell Painting version 3, in which some steps are simplified and several stain concentrations can be reduced, saving costs. Cell culture and image acquisition take 1-2 weeks for typically sized batches of ≤20 plates; feature extraction and data analysis take an additional 1-2 weeks.This protocol is an update to Nat. Protoc. 11, 1757-1774 (2016): https://doi.org/10.1038/nprot.2016.105.


Subject(s)
Cell Culture Techniques , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence , Mitochondria , Software
3.
Mol Cancer Res ; 20(3): 361-372, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34799403

ABSTRACT

Various subunits of mammalian SWI/SNF chromatin remodeling complexes display loss-of-function mutations characteristic of tumor suppressors in different cancers, but an additional role for SWI/SNF supporting cell survival in distinct cancer contexts is emerging. In particular, genetic dependence on the catalytic subunit BRG1/SMARCA4 has been observed in acute myelogenous leukemia (AML), yet the feasibility of direct therapeutic targeting of SWI/SNF catalytic activity in leukemia remains unknown. Here, we evaluated the activity of dual BRG1/BRM ATPase inhibitors across a genetically diverse panel of cancer cell lines and observed that hematopoietic cancer cell lines were among the most sensitive compared with other lineages. This result was striking in comparison with data from pooled short hairpin RNA screens, which showed that only a subset of leukemia cell lines display sensitivity to BRG1 knockdown. We demonstrate that combined genetic knockdown of BRG1 and BRM is required to recapitulate the effects of dual inhibitors, suggesting that SWI/SNF dependency in human leukemia extends beyond a predominantly BRG1-driven mechanism. Through gene expression and chromatin accessibility studies, we show that the dual inhibitors act at genomic loci associated with oncogenic transcription factors, and observe a downregulation of leukemic pathway genes, including MYC, a well-established target of BRG1 activity in AML. Overall, small-molecule inhibition of BRG1/BRM induced common transcriptional responses across leukemia models resulting in a spectrum of cellular phenotypes. IMPLICATIONS: Our studies reveal the breadth of SWI/SNF dependency in leukemia and support targeting SWI/SNF catalytic function as a potential therapeutic strategy in AML.


Subject(s)
Adenosine Triphosphatases , Leukemia, Myeloid, Acute , Adenosine Triphosphatases/genetics , Animals , Carcinogenesis , Chromatin Assembly and Disassembly , DNA Helicases/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mammals/genetics , Mammals/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Cell Chem Biol ; 28(10): 1407-1419.e6, 2021 10 21.
Article in English | MEDLINE | ID: mdl-33794192

ABSTRACT

Three limonoid natural products with selective anti-proliferative activity against BRAF(V600E) and NRAS(Q61K)-mutation-dependent melanoma cell lines were identified. Differential transcriptome analysis revealed dependency of compound activity on expression of the mitochondrial cytochrome P450 oxidase CYP27A1, a transcriptional target of melanogenesis-associated transcription factor (MITF). We determined that CYP27A1 activity is necessary for the generation of a reactive metabolite that proceeds to inhibit cellular proliferation. A genome-wide small interfering RNA screen in combination with chemical proteomics experiments revealed gene-drug functional epistasis, suggesting that these compounds target mitochondrial biogenesis and inhibit tumor bioenergetics through a covalent mechanism. Our work suggests a strategy for melanoma-specific targeting by exploiting the expression of MITF target gene CYP27A1 and inhibiting mitochondrial oxidative phosphorylation in BRAF mutant melanomas.


Subject(s)
Cholestanetriol 26-Monooxygenase/metabolism , Limonins/pharmacology , Mitochondria/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Products/chemistry , Biological Products/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cholestanetriol 26-Monooxygenase/antagonists & inhibitors , Cholestanetriol 26-Monooxygenase/genetics , Humans , Limonins/chemistry , Limonins/metabolism , Limonins/therapeutic use , Melanoma/drug therapy , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , RNA Interference , RNA, Small Interfering/metabolism
5.
Clin Cancer Res ; 27(7): 2061-2073, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33355204

ABSTRACT

PURPOSE: Targeting RAF for antitumor therapy in RAS-mutant tumors holds promise. Herein, we describe in detail novel properties of the type II RAF inhibitor, LXH254. EXPERIMENTAL DESIGN: LXH254 was profiled in biochemical, in vitro, and in vivo assays, including examining the activities of the drug in a large panel of cancer-derived cell lines and a comprehensive set of in vivo models. In addition, activity of LXH254 was assessed in cells where different sets of RAF paralogs were ablated, or that expressed kinase-impaired and dimer-deficient variants of ARAF. RESULTS: We describe an unexpected paralog selectivity of LXH254, which is able to potently inhibit BRAF and CRAF, but has less activity against ARAF. LXH254 was active in models harboring BRAF alterations, including atypical BRAF alterations coexpressed with mutant K/NRAS, and NRAS mutants, but had only modest activity in KRAS mutants. In RAS-mutant lines, loss of ARAF, but not BRAF or CRAF, sensitized cells to LXH254. ARAF-mediated resistance to LXH254 required both kinase function and dimerization. Higher concentrations of LXH254 were required to inhibit signaling in RAS-mutant cells expressing only ARAF relative to BRAF or CRAF. Moreover, specifically in cells expressing only ARAF, LXH254 caused paradoxical activation of MAPK signaling in a manner similar to dabrafenib. Finally, in vivo, LXH254 drove complete regressions of isogenic variants of RAS-mutant cells lacking ARAF expression, while parental lines were only modestly sensitive. CONCLUSIONS: LXH254 is a novel RAF inhibitor, which is able to inhibit dimerized BRAF and CRAF, as well as monomeric BRAF, while largely sparing ARAF.


Subject(s)
MAP Kinase Signaling System/physiology , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HCT116 Cells , Humans , Mice , Mutation , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins c-raf/chemistry , Proto-Oncogene Proteins p21(ras)/genetics
6.
Cell Chem Biol ; 27(9): 1124-1129, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32707038

ABSTRACT

Chemogenetic libraries, collections of well-defined chemical probes, provide tremendous value to biomedical research but require substantial effort to ensure diversity as well as quality of the contents. We have assembled a chemogenetic library by data mining and crowdsourcing institutional expertise. We are sharing our approach, lessons learned, and disclosing our current collection of 4,185 compounds with their primary annotated gene targets (https://github.com/Novartis/MoaBox). This physical collection is regularly updated and used broadly both within Novartis and in collaboration with external partners.


Subject(s)
Molecular Probes/chemistry , Small Molecule Libraries/chemistry , Biological Assay , Databases, Chemical , Drug Discovery , Humans , Machine Learning , Molecular Probes/metabolism , Small Molecule Libraries/metabolism
8.
Angew Chem Int Ed Engl ; 54(35): 10149-54, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26179970

ABSTRACT

Cultivation of myxobacteria of the Nannocystis genus led to the isolation and structure elucidation of a class of novel cyclic lactone inhibitors of elongation factor 1. Whole genome sequence analysis and annotation enabled identification of the putative biosynthetic cluster and synthesis process. In biological assays the compounds displayed anti-fungal and cytotoxic activity. Combined genetic and proteomic approaches identified the eukaryotic translation elongation factor 1α (EF-1α) as the primary target for this compound class. Nannocystin A (1) displayed differential activity across various cancer cell lines and EEF1A1 expression levels appear to be the main differentiating factor. Biochemical and genetic evidence support an overlapping binding site of 1 with the anti-cancer compound didemnin B on EF-1α. This myxobacterial chemotype thus offers an interesting starting point for further investigations of the potential of therapeutics targeting elongation factor 1.


Subject(s)
Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Macrocyclic Compounds/pharmacology , Myxococcales/physiology , Neoplasms/pathology , Peptide Elongation Factor 1/antagonists & inhibitors , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Candida albicans/drug effects , Genomics/methods , Humans , Macrocyclic Compounds/chemistry , Molecular Structure , Neoplasms/drug therapy , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Proteomics/methods , Structure-Activity Relationship , Tumor Cells, Cultured
9.
Front Plant Sci ; 5: 267, 2014.
Article in English | MEDLINE | ID: mdl-24966862

ABSTRACT

The phosphoinositide pathway and inositol-1,4,5-triphosphate (InsP3) have been implicated in plant responses to many abiotic stresses; however, their role in response to biotic stress is not well characterized. In the current study, we show that both basal defense and systemic acquired resistance responses are affected in transgenic plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase) which have greatly reduced InsP3 levels. Flagellin induced Ca(2+)-release as well as the expressions of some flg22 responsive genes were attenuated in the InsP 5-ptase plants. Furthermore, the InsP 5-ptase plants were more susceptible to virulent and avirulent strains of Pseudomonas syringae pv. tomato (Pst) DC3000. The InsP 5-ptase plants had lower basal salicylic acid (SA) levels and the induction of SAR in systemic leaves was reduced and delayed. Reciprocal exudate experiments showed that although the InsP 5-ptase plants produced equally effective molecules that could trigger PR-1 gene expression in wild type plants, exudates collected from either wild type or InsP 5-ptase plants triggered less PR-1 gene expression in InsP 5-ptase plants. Additionally, expression profiles indicated that several defense genes including PR-1, PR-2, PR-5, and AIG1 were basally down regulated in the InsP 5-ptase plants compared with wild type. Upon pathogen attack, expression of these genes was either not induced or showed delayed induction in systemic leaves. Our study shows that phosphoinositide signaling is one component of the plant defense network and is involved in both basal and systemic responses. The dampening of InsP3-mediated signaling affects Ca(2+) release, modulates defense gene expression and compromises plant defense responses.

10.
Nature ; 483(7391): 603-7, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22460905

ABSTRACT

The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.


Subject(s)
Databases, Factual , Drug Screening Assays, Antitumor/methods , Encyclopedias as Topic , Models, Biological , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Lineage , Chromosomes, Human/genetics , Clinical Trials as Topic/methods , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, ras/genetics , Genome, Human/genetics , Genomics , Humans , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Pharmacogenetics , Plasma Cells/cytology , Plasma Cells/drug effects , Plasma Cells/metabolism , Precision Medicine/methods , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Sequence Analysis, DNA , Topoisomerase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...