Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 24(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36141124

ABSTRACT

For over five decades, the mathematical procedure termed "maximum entropy" (M-E) has been used to deconvolve structure in spectra, optical and otherwise, although quantitative measures of performance remain unknown. Here, we examine this procedure analytically for the lowest two orders for a Lorentzian feature, obtaining expressions for the amount of sharpening and identifying how spurious structures appear. Illustrative examples are provided. These results enhance the utility of this widely used deconvolution approach to spectral analysis.

2.
Opt Express ; 28(26): 38917-38933, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379450

ABSTRACT

Linear noise-reduction filters used in spectroscopy must strike a balance between reducing noise and preserving lineshapes, the two conflicting requirements of interest. Here, we quantify this tradeoff by capitalizing on Parseval's Theorem to cast two measures of performance, mean-square error (MSE) and noise, into reciprocal- (Fourier-) space (RS). The resulting expressions are simpler and more informative than those based in direct- (spectral-) space (DS). These results provide quantitative insight not only into the effectiveness of different linear filters, but also information as to how they can be improved. Surprisingly, the rectangular ("ideal" or "brick wall") filter is found to be nearly optimal, a consequence of eliminating distortion in low-order Fourier coefficients where the major fraction of spectral information is contained. Using the information provided by the RS version of MSE, we develop a version that is demonstrably superior to the brick-wall and also the Gauss-Hermite filter, its former nearest competitor.

3.
Sci Rep ; 5: 16996, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26598075

ABSTRACT

We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5-7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5-7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. The knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.

4.
Proc Natl Acad Sci U S A ; 107(41): 17503-8, 2010 Oct 12.
Article in English | MEDLINE | ID: mdl-20876145

ABSTRACT

In-plane directional control of surface chemistry during interface formation can lead to new opportunities regarding device structures and applications. Control of this type requires techniques that can probe and hence provide feedback on the chemical reactivity of bonds not only in specific directions but also in real time. Here, we demonstrate both control and measurement of the oxidation of H-terminated (111) Si. Control is achieved by externally applying uniaxial strain, and measurement by second-harmonic generation (SHG) together with the anisotropic-bond model of nonlinear optics. In this system anisotropy results because bonds in the strain direction oxidize faster than those perpendicular to it, leading in addition to transient structural changes that can also be detected at the bond level by SHG.


Subject(s)
Chemistry/methods , Hydrogen/chemistry , Molecular Conformation , Silicon/chemistry , Anisotropy , Models, Chemical , Nonlinear Dynamics , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...