Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 94: 129454, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37591316

ABSTRACT

Activation of the glucagon-like peptide-1 (GLP-1) receptor stimulates insulin release, lowers plasma glucose levels, delays gastric emptying, increases satiety, suppresses food intake, and affords weight loss in humans. These beneficial attributes have made peptide-based agonists valuable tools for the treatment of type 2 diabetes mellitus and obesity. However, efficient, and consistent delivery of peptide agents generally requires subcutaneous injection, which can reduce patient utilization. Traditional orally absorbed small molecules for this target may offer improved patient compliance as well as the opportunity for co-formulation with other oral therapeutics. Herein, we describe an SAR investigation leading to small-molecule GLP-1 receptor agonists that represent a series that parallels the recently reported clinical candidate danuglipron. In the event, identification of a benzyloxypyrimidine lead, using a sensitized high-throughput GLP-1 agonist assay, was followed by optimization of the SAR using substituent modifications analogous to those discovered in the danuglipron series. A new series of 6-azaspiro[2.5]octane molecules was optimized into potent GLP-1 agonists. Information gleaned from cryogenic electron microscope structures was used to rationalize the SAR of the optimized compounds.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Humans , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/agonists , High-Throughput Screening Assays , Hypoglycemic Agents/pharmacology , Octanes/chemistry , Octanes/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology
2.
Bioorg Med Chem Lett ; 92: 129394, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37379958

ABSTRACT

Our previous work on the optimization of a new class of small molecule PCSK9 mRNA translation inhibitors focused on empirical optimization of the amide tail region of the lead PF-06446846 (1). This work resulted in compound 3 that showed an improved safety profile. We hypothesized that this improvement was related to diminished binding of 3 to non-translating ribosomes and an apparent improvement in transcript selectivity. Herein, we describe our efforts to further optimize this series of inhibitors through modulation of the heterocyclic head group and the amine fragment. Some of the effort was guided by an emerging cryo electron microscopy structure of the binding mode of 1 in the ribosome. These efforts led to the identification of 15 that was deemed suitable for evaluation in a humanized PCSK9 mouse model and a rat toxicology study. Compound 15 demonstrated a dose dependent reduction of plasma PCSK9 levels. The rat toxicological profile was not improved over that of 1, which precluded 15 from further consideration as a clinical candidate.

3.
J Med Chem ; 66(4): 2832-2850, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36727857

ABSTRACT

Genome-wide association studies in patients revealed HSD17B13 as a potential new target for the treatment of nonalcoholic steatohepatitis (NASH) and other liver diseases. However, the physiological function and the disease-relevant substrate of HSD17B13 remain unknown. In addition, no suitable chemical probe for HSD17B13 has been published yet. Herein, we report the identification of the novel potent and selective HSD17B13 inhibitor BI-3231. Through high-throughput screening (HTS), using estradiol as substrate, compound 1 was identified and selected for subsequent optimization resulting in compound 45 (BI-3231). In addition to the characterization of compound 45 for its functional, physicochemical, and drug metabolism and pharmacokinetic (DMPK) properties, NAD+ dependency was investigated. To support Open Science, the chemical HSD17B13 probe BI-3231 will be available to the scientific community for free via the opnMe platform, and thus can help to elucidate the pharmacology of HSD17B13.


Subject(s)
Genome-Wide Association Study , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , High-Throughput Screening Assays
4.
Bioorg Med Chem Lett ; 50: 128320, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34400299

ABSTRACT

The atypical chemokine receptor C-X-C chemokine receptor type 7 (CXCR7) is an attractive therapeutic target for a variety of cardiac and immunological diseases. As a strategy to mitigate known risks associated with the development of higher molecular weight, basic compounds, a series of pyrrolidinyl-azolopyrazines were identified as promising small-molecule CXCR7 modulators. Using a highly enabled parallel medicinal chemistry strategy, structure-activity relationship studies geared towards a reduction in lipophilicity and incorporation of saturated heterocycles led to the identification of representative tool compound 20. Notably, compound 20 maintained good potency against CXCR7 with a suitable balance of physicochemical properties to support in vivo pharmacokinetic studies.


Subject(s)
Drug Discovery , Immunologic Factors/chemical synthesis , Immunologic Factors/pharmacology , Receptors, CXCR/antagonists & inhibitors , Animals , Drug Delivery Systems , Drug Design , Immunologic Factors/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Signal Transduction , Structure-Activity Relationship
5.
J Med Chem ; 61(13): 5704-5718, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29878763

ABSTRACT

The optimization of a new class of small molecule PCSK9 mRNA translation inhibitors is described. The potency, physicochemical properties, and off-target pharmacology associated with the hit compound (1) were improved by changes to two regions of the molecule. The last step in the synthesis of the congested amide center was enabled by three different routes. Subtle structural changes yielded significant changes in pharmacology and off-target margins. These efforts led to the identification of 7l and 7n with overall profiles suitable for in vivo evaluation. In a 14-day toxicology study, 7l demonstrated an improved safety profile vs lead 7f. We hypothesize that the improved safety profile is related to diminished binding of 7l to nontranslating ribosomes and an apparent improvement in transcript selectivity due to the lower strength of 7l stalling of off-target proteins.


Subject(s)
PCSK9 Inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Animals , Drug Design , Male , Protease Inhibitors/adverse effects , Protease Inhibitors/metabolism , Rats , Rats, Sprague-Dawley , Safety , Structure-Activity Relationship
6.
J Med Chem ; 61(6): 2372-2383, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29466005

ABSTRACT

Optimization of the pharmacokinetic (PK) properties of a series of activators of adenosine monophosphate-activated protein kinase (AMPK) is described. Derivatives of the previously described 5-aryl-indole-3-carboxylic acid clinical candidate (1) were examined with the goal of reducing glucuronidation rate and minimizing renal excretion. Compounds 10 (PF-06679142) and 14 (PF-06685249) exhibited robust activation of AMPK in rat kidneys as well as desirable oral absorption, low plasma clearance, and negligible renal clearance in preclinical species. A correlation of in vivo renal clearance in rats with in vitro uptake by human and rat renal organic anion transporters (human OAT/rat Oat) was identified. Variation of polar functional groups was critical to mitigate active renal clearance mediated by the Oat3 transporter. Modification of either the 6-chloroindole core to a 4,6-difluoroindole or the 5-phenyl substituent to a substituted 5-(3-pyridyl) group provided improved metabolic stability while minimizing propensity for active transport by OAT3.


Subject(s)
AMP-Activated Protein Kinases/drug effects , Enzyme Activators/chemical synthesis , Enzyme Activators/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Animals , Enzyme Activation/drug effects , Enzyme Activators/pharmacokinetics , Humans , Indoles/pharmacokinetics , Intestinal Absorption , Kidney/drug effects , Kidney/enzymology , Male , Models, Molecular , Organic Anion Transporters, Sodium-Independent/metabolism , Rats , Rats, Wistar , Structure-Activity Relationship
7.
Nat Chem Biol ; 10(8): 629-31, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24997604

ABSTRACT

We report that 4-(3-(benzyloxy)phenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), which behaves as a positive allosteric modulator at the glucagon-like peptide-1 receptor (GLP-1R), covalently modifies cysteines 347 and 438 in GLP-1R. C347, located in intracellular loop 3 of GLP-1R, is critical to the activity of BETP and a structurally distinct GLP-1R ago-allosteric modulator, N-(tert-butyl)-6,7-dichloro-3-(methylsulfonyl)quinoxalin-2-amine. We further show that substitution of cysteine for phenylalanine 345 in the glucagon receptor is sufficient to confer sensitivity to BETP.


Subject(s)
Pyrimidines/chemistry , Receptors, Glucagon/metabolism , Animals , CHO Cells , Cricetulus , Cysteine/chemistry , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide-1 Receptor , Humans , Ligands , Pyrimidines/metabolism , Receptors, Glucagon/chemistry
8.
Org Lett ; 16(11): 3114-7, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24848311

ABSTRACT

An operationally simple and efficient one-pot synthesis of 2H-indazoles from commercially available reagents is reported. Ortho-imino-nitrobenzene substrates, generated via condensation, undergo reductive cyclization promoted by tri-n-butylphosophine to afford substituted 2H-indazoles under mild reaction conditions. A variety of electronically diverse ortho-nitrobenzaldehydes and anilines were examined. To further extend the scope of the transformation, aliphatic amines were also employed to form N2-alkyl indazoles selectively under the optimized reaction conditions.


Subject(s)
Indazoles/chemistry , Indazoles/chemical synthesis , Benzaldehydes/chemistry , Catalysis , Cyclization , Indicators and Reagents/chemistry , Molecular Structure , Nitrobenzenes/chemistry
9.
Bioorg Med Chem Lett ; 23(16): 4571-8, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23831135

ABSTRACT

Glucokinase activators are a class of experimental agents under investigation as a therapy for Type 2 diabetes mellitus. An X-ray crystal structure of a modestly potent agent revealed the potential to substitute the common heterocyclic amide donor-acceptor motif for a pyridone moiety. We have successfully demonstrated that both pyridone and pyrimidone heterocycles can be used as a potent donor-acceptor substituent. Several sub-micromolar analogs that possess the desired partial activator profile were synthesized and characterized. Unfortunately, the most potent activators suffered from sub-optimal pharmacokinetic properties. Nonetheless, these donor-acceptor motifs may find utility in other glucokinase activator series or beyond.


Subject(s)
Enzyme Activators/chemistry , Glucokinase/metabolism , Pyrimidinones/chemical synthesis , Allosteric Regulation , Amino Acid Motifs , Animals , Binding Sites , Models, Molecular , Pyrimidinones/chemistry , Rats
10.
Bioorg Med Chem Lett ; 23(10): 3051-8, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23562063

ABSTRACT

A novel and potent small molecule glucagon receptor antagonist for the treatment of diabetes mellitus is reported. This candidate, (S)-3-[4-(1-{3,5-dimethyl-4-[4-(trifluoromethyl)-1H-pyrazol-1-yl]phenoxy}butyl)benzamido]propanoic acid, has lower molecular weight and lipophilicity than historical glucagon receptor antagonists, resulting in excellent selectivity in broad-panel screening, lower cytotoxicity, and excellent overall in vivo safety in early pre-clinical testing. Additionally, it displays low in vivo clearance and excellent oral bioavailability in both rats and dogs. In a rat glucagon challenge model, it was shown to reduce the glucagon-elicited glucose excursion in a dose-dependent manner and at a concentration consistent with its rat in vitro potency. Its properties make it an excellent candidate for further investigation.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Drug Design , Propionates/pharmacology , Receptors, Glucagon/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Chemistry, Physical , Dogs , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Haplorhini , Humans , Liver/cytology , Mice , Molecular Structure , Propionates/administration & dosage , Propionates/chemical synthesis , Rats , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 22(24): 7523-9, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23153798

ABSTRACT

Previous drug discovery efforts identified classical PYK2 kinase inhibitors such as 2 and 3 that possess selectivity for PYK2 over its intra-family isoform FAK. Efforts to identify more kinome-selective chemical matter that stabilize a DFG-out conformation of the enzyme are described herein. Two sub-series of PYK2 inhibitors, an indole carboxamide-urea and a pyrazole-urea have been identified and found to have different binding interactions with the hinge region of PYK2. These leads proved to be more selective than the original classical inhibitors.


Subject(s)
Focal Adhesion Kinase 2/antagonists & inhibitors , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Urea/pharmacology , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Focal Adhesion Kinase 2/metabolism , HEK293 Cells , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Rats , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemistry
12.
Bioorg Med Chem Lett ; 22(23): 7100-5, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23089526

ABSTRACT

Glucokinase activators represent a promising potential treatment for patients with Type 2 diabetes. Herein, we report the identification and optimization of a series of novel indazole and pyrazolopyridine based activators leading to the identification of 4-(6-(azetidine-1-carbonyl)-5-fluoropyridin-3-yloxy)-2-ethyl-N-(5-methylpyrazin-2-yl)-2H-indazole-6-carboxamide (42) as a potent activator with favorable preclinical pharmacokinetic properties and in vivo efficacy.


Subject(s)
Drug Design , Glucokinase/chemistry , Hypoglycemic Agents/chemical synthesis , Indazoles/chemistry , Pyrazines/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemistry , Administration, Oral , Animals , Cell Line, Tumor , Diabetes Mellitus, Type 2/drug therapy , Glucokinase/metabolism , Glucose Tolerance Test , Half-Life , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Indazoles/chemical synthesis , Indazoles/pharmacokinetics , Indazoles/therapeutic use , Insulin/metabolism , Kinetics , Protein Binding , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
13.
Cell Immunol ; 275(1-2): 47-54, 2012.
Article in English | MEDLINE | ID: mdl-22507871

ABSTRACT

B-lymphocytes produce protective antibodies but also contribute to autoimmunity. In particular, marginal zone (MZ) B cells recognize both microbial components and self-antigens. B cell trafficking is critical for B cell activation and is controlled by chemoattactants such as CXCL13 and sphingosine 1-phosphate (S1P). The related tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase (Pyk2) regulate cell migration and adhesion but their roles in B cells are not fully understood. Using a novel Pyk2-selective inhibitor described herein (PF-719), as well as a FAK-selective inhibitor, we show that both Pyk2 and FAK are important for CXCL13- and S1P-induced migration of B-2 cells and MZ B cells. In contrast, LFA-1-mediated adhesion required only Pyk2 whereas activation of the Akt pro-survival kinase required FAK but not Pyk2. Thus Pyk2 and FAK mediate critical processes in B cells and these inhibitors can be used to further elucidate their functions in B cells.


Subject(s)
B-Lymphocytes/drug effects , Chemotaxis/drug effects , Focal Adhesion Kinase 2/antagonists & inhibitors , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , Quinolones/pharmacology , Sulfones/pharmacology , para-Aminobenzoates , 4-Aminobenzoic Acid/pharmacology , Animals , B-Lymphocytes/cytology , B-Lymphocytes/enzymology , Cell Adhesion/drug effects , Cell Line , Chemokine CXCL13/pharmacology , Chemotactic Factors/pharmacology , Enzyme Activation/drug effects , Lysophospholipids/pharmacology , Mice , Mice, Inbred C57BL , Sphingosine/analogs & derivatives , Sphingosine/pharmacology
14.
Bioorg Med Chem Lett ; 21(20): 6122-5, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21908190

ABSTRACT

A novel series of potent DGAT-1 inhibitors was developed originating from the lactam-based clinical candidate PF-04620110. Incorporation of a dioxino[2,3-d]pyrimidine-based core afforded good alignment of pharmacophore features and resulted in improved passive permeability. Development of an efficient, homochiral synthesis of these targets facilitated confirmation of predictions regarding the stereochemical-dependence of DGAT-1 inhibition for this series. Compound 10 was shown to be a potent inhibitor of human DGAT-1 (10 nM) and to suppress triglyceride synthesis at oral doses of <3mg/kg.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Oxazepines/chemistry , Oxazepines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Diacylglycerol O-Acyltransferase/metabolism , Drug Design , Enzyme Inhibitors/chemical synthesis , Humans , Mice , Models, Molecular , Oxazepines/chemical synthesis , Pyrimidines/chemical synthesis , Triglycerides/metabolism
15.
Bioorg Med Chem Lett ; 19(12): 3177-82, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19433356

ABSTRACT

Previous studies have demonstrated the CYP3A4 mediated oxidation of the 5-aminooxindole motif, present in the trifluoromethylpyrimidine class of PYK-2 inhibitors, to a reactive bis-imine species, which can be trapped with glutathione (GSH) in human liver microsomal incubations. The corresponding 5-aminobenzsultam derivatives, which should possess a similar oxidative liability, do not form GSH conjugates in microsomal incubations. In the current study, we conducted a retrospective analysis on representative 5-aminooxindole and 5-aminobenzsultam PYK-2 inhibitors utilizing CYP3A4 molecular docking and quantum chemical calculations to rationalize the bioactivation differences. Our analysis revealed key differences in (a) active site binding and (b) two-electron oxidation rates, which correlate with GSH adduct formation with the two moieties. The value of linear ion/orbitrap mass spectrometry to detect GSH conjugates with greater sensitivity, compared with conventional triple quadrupole mass spectrometry approaches, was also demonstrated in the course of these studies.


Subject(s)
Benzene Derivatives/pharmacology , Cytochrome P-450 CYP3A/metabolism , Focal Adhesion Kinase 2/antagonists & inhibitors , Glutathione/metabolism , Indoles/pharmacology , Amines/pharmacology , Catalysis , Computer Simulation , Humans , Mass Spectrometry , Microsomes , Models, Molecular , Oxidation-Reduction , Oxindoles , Protein Binding , Protein Kinase Inhibitors
16.
J Biol Chem ; 284(19): 13193-201, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19244237

ABSTRACT

Proline-rich tyrosine kinase 2 (PYK2) is a cytoplasmic, non-receptor tyrosine kinase implicated in multiple signaling pathways. It is a negative regulator of osteogenesis and considered a viable drug target for osteoporosis treatment. The high-resolution structures of the human PYK2 kinase domain with different inhibitor complexes establish the conventional bilobal kinase architecture and show the conformational variability of the DFG loop. The basis for the lack of selectivity for the classical kinase inhibitor, PF-431396, within the FAK family is explained by our structural analyses. Importantly, the novel DFG-out conformation with two diarylurea inhibitors (BIRB796, PF-4618433) reveals a distinct subclass of non-receptor tyrosine kinases identifiable by the gatekeeper Met-502 and the unique hinge loop conformation of Leu-504. This is the first example of a leucine residue in the hinge loop that blocks the ATP binding site in the DFG-out conformation. Our structural, biophysical, and pharmacological studies suggest that the unique features of the DFG motif, including Leu-504 hinge-loop variability, can be exploited for the development of selective protein kinase inhibitors.


Subject(s)
Drug Design , Enzyme Inhibitors/pharmacology , Focal Adhesion Kinase 2/chemistry , Naphthalenes/pharmacology , Protein Conformation , Pyrazoles/pharmacology , Amino Acid Sequence , Calcification, Physiologic , Cloning, Molecular , Crystallography, X-Ray , Focal Adhesion Kinase 2/antagonists & inhibitors , Focal Adhesion Kinase 2/metabolism , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/enzymology , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/enzymology , Protein Binding , Sequence Homology, Amino Acid
17.
Bioorg Med Chem Lett ; 18(23): 6071-7, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18951788

ABSTRACT

The synthesis and SAR for a series of diaminopyrimidines as PYK2 inhibitors are described. Using a combination of library and traditional medicinal chemistry techniques, a FAK-selective chemical series was transformed into compounds possessing good PYK2 potency and 10- to 20-fold selectivity against FAK. Subsequent studies found that the majority of the compounds were positive in a reactive metabolite assay, an indicator for potential toxicological liabilities. Based on the proposed mechanism for bioactivation, as well as a combination of structure-based drug design and traditional medicinal chemistry techniques, a follow-up series of PYK2 inhibitors was identified that maintained PYK2 potency, FAK selectivity and HLM stability, yet were negative in the RM assay.


Subject(s)
Focal Adhesion Kinase 2/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Animals , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Disease Models, Animal , Drug Design , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Humans , Molecular Conformation , Molecular Structure , Osteoporosis/drug therapy , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...