Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 198(2): 246-259, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38237923

ABSTRACT

Early developmental exposure to environmental toxicants may play a role in the risk for developing autism. A variety of pesticides have direct effects on retinoic acid (RA) signaling and as RA signaling has important roles in neurodevelopment, such compounds may cause developmental neurotoxicity through an overlapping adverse outcome pathway. It is hypothesized that a pesticide's embryonic effects on retinoid function may correspond with neurobehavioral disruption later in development. In the current studies, we determined the effects of RA-acting pesticides on neurobehavioral development in zebrafish. Buprofezin and imazalil caused generalized hypoactivity in the larval motility test, whereas chlorothalonil and endosulfan I led to selective hypoactivity and hyperactivity, respectively. With buprofezin, chlorothalonil, and imazalil, hypoactivity and/or novel anxiety-like behaviors persisted in adulthood and buprofezin additionally decreased social attraction responses in adulthood. Endosulfan I did not produce significant adult behavioral effects. Using qPCR analyses of adult brain tissue, we observed treatment-induced alterations in RA synthesis or catabolic genes, indicating persistent changes in RA homeostasis. These changes were compound-specific, with respect to expression directionality, and potential patterns of homeostatic disruption. Results suggest the likely persistence of disruptions in RA signaling well into adulthood and may represent compensatory mechanisms following early life stage exposures. This study demonstrates that early developmental exposure to environmental toxicants that interfere with RA signaling causes short as well as long-term behavioral disruption in a well-established zebrafish behavioral model and expand upon the meaning of the RA adverse outcome pathway, indicating that observed effects likely correspond with the nature of underlying homeostatic effects.


Subject(s)
Nitriles , Pesticides , Thiadiazines , Zebrafish , Animals , Tretinoin/toxicity , Retinoids/pharmacology , Pesticides/metabolism , Endosulfan , Behavior, Animal
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675130

ABSTRACT

Ozone (O3) is an air pollutant that primarily damages the lungs, but growing evidence supports the idea that O3 also harms the brain; acute exposure to O3 has been linked to central nervous system (CNS) symptoms such as depressed mood and sickness behaviors. However, the mechanisms by which O3 inhalation causes neurobehavioral changes are limited. One hypothesis is that factors in the circulation bridge communication between the lungs and brain following O3 exposure. In this study, our goals were to characterize neurobehavioral endpoints of O3 exposure as they relate to markers of systemic and pulmonary inflammation, with a particular focus on serum amyloid A (SAA) and kynurenine as candidate mediators of O3 behavioral effects. We evaluated O3-induced dose-, time- and sex-dependent changes in pulmonary inflammation, circulating SAA and kynurenine and its metabolic enzymes, and sickness and depressive-like behaviors in Balb/c and CD-1 mice. We found that 3 parts per million (ppm) O3, but not 2 or 1 ppm O3, increased circulating SAA and lung inflammation, which were resolved by 48 h and was worse in females. We also found that indoleamine 2,3-dioxygenase (Ido1) mRNA expression was increased in the brain and spleen 24 h after 3 ppm O3 and that kynurenine was increased in blood. Sickness and depressive-like behaviors were observed at all O3 doses (1-3 ppm), suggesting that behavioral responses to O3 can occur independently of increased SAA or neutrophils in the lungs. Using SAA knockout mice, we found that SAA did not contribute to O3-induced pulmonary damage or inflammation, systemic increases in kynurenine post-O3, or depressive-like behavior but did contribute to weight loss. Together, these findings indicate that acute O3 exposure induces transient symptoms of sickness and depressive-like behaviors that may occur in the presence or absence of overt pulmonary neutrophilia and systemic increases of SAA. SAA does not appear to contribute to pulmonary inflammation induced by O3, although it may contribute to other aspects of sickness behavior, as reflected by a modest effect on weight loss.


Subject(s)
Ozone , Pneumonia , Female , Mice , Animals , Ozone/toxicity , Serum Amyloid A Protein/metabolism , Kynurenine/metabolism , Lung/metabolism , Pneumonia/metabolism , Phenotype
3.
Brain Behav Immun ; 109: 127-138, 2023 03.
Article in English | MEDLINE | ID: mdl-36681359

ABSTRACT

In the medial prefrontal cortex (PFC), chronic stress reduces synaptic expression of glutamate receptors, leading to decreased excitatory signaling from layer V pyramidal neurons and working memory deficits. One key element driving these changes is a reduction in brain-derived neurotrophic factor (BDNF) signaling. BDNF is a potent mediator of synaptic growth and deficient BDNF signaling has been linked to stress susceptibility. Prior studies indicated that neurons are the primary source of BDNF, but more recent work suggests that microglia are also an important source of BDNF. Adding to this, our work showed that 14 days of chronic unpredictable stress (CUS) reduced Bdnf transcript in PFC microglia, evincing its relevance in the effects of stress. To explore this further, we utilized transgenic mice with microglia-specific depletion of BDNF (Cx3cr1Cre/+:Bdnffl/fl) and genotype controls (Cx3cr1Cre/+:Bdnf+/+). In the following experiments, mice were exposed to a shortened CUS paradigm (7 days) to determine if microglial Bdnf depletion promotes stress susceptibility. Analyses of PFC microglia revealed that Cx3cr1Cre/+:Bdnffl/fl mice had shifts in phenotypic markers and gene expression. In a separate cohort, synaptoneurosomes were collected from the PFC and western blotting was performed for synaptic markers. These experiments showed that Cx3cr1Cre/+:Bdnffl/fl mice had baseline deficits in GluN2B, and that 7 days of CUS additionally reduced GluN2A levels in Cx3cr1Cre/+:Bdnffl/fl mice, but not genotype controls. Behavioral and cognitive testing showed that this coincided with exacerbated stress effects on temporal object recognition in Cx3cr1Cre/+:Bdnffl/fl mice. These results indicate that microglial BDNF promotes glutamate receptor expression in the PFC. As such, mice with deficient microglial BDNF had increased susceptibility to the behavioral and cognitive consequences of stress.


Subject(s)
Brain-Derived Neurotrophic Factor , Microglia , Animals , Mice , Brain-Derived Neurotrophic Factor/metabolism , Mice, Transgenic , Microglia/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Humans
4.
Neurotoxicology ; 86: 78-84, 2021 09.
Article in English | MEDLINE | ID: mdl-34273383

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants created by incomplete combustion. Benzo(a)pyrene (BaP), the prototypic PAH, is known to exert toxicity through oxidative stress which is thought to occur through inhibition of antioxidant scavenging systems. The use of agents that reduce oxidative stress may be a valuable route for ameliorating the adverse effects of PAHs on neural development and behavior. This study was conducted to determine if tocofersolan (a synthetic water-soluble analog of vitamin E) supplementation can prevent or reduce neurobehavioral deficits in zebrafish embryos exposed to BaP during early development. Newly hatched zebrafish were assessed on locomotor activity and light responsivity. Zebrafish embryos were exposed to vehicle (DMSO), tocofersolan (0.3 µM-3 µM), and/or BaP (5 µM) from 5-120 hours post-fertilization. This concentration range was below the threshold for producing overt dysmorphogenesis or decreased survival. One day after the end of exposure the larval fish were tested for locomotor activity under alternating light and dark 10 min periods, BaP (5 µM) was found to cause locomotor hypoactivity in larval fish. Co-exposure of tocofersolan (1 µM) restored control-like locomotor function. Based on the findings of this study, this model can be expanded to assess the outcome of vitamin E supplementation on other potential environmental neurotoxicants, and lead to determination if this rescue persists into adulthood.


Subject(s)
Benzo(a)pyrene/toxicity , Larva/drug effects , Locomotion/drug effects , Oxidative Stress/drug effects , Vitamin E/pharmacology , Animals , Female , Larva/physiology , Locomotion/physiology , Male , Oxidative Stress/physiology , Water Pollutants, Chemical/toxicity , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...