Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 351: 119802, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134502

ABSTRACT

The depletion of water resources has gained global attention, particularly in arid climates, where there is growing interest in reusing treated wastewater for irrigation. This study focuses on the impact of irrigating treated wastewater using a hybrid multi-soil-layering (MSL) technology on soil physicochemical properties and the agro-physiological characteristics of maize (Zea mays) cultivated in Morocco, a region characterized by arid conditions. To achieve this research goals, three plots were cultivated with Zea mays and subjected to irrigation with water of varying qualities: raw wastewater (RWW), treated wastewater (TWW), and well water (WW). This experiment ran for five months, covering one crop season. The physicochemical and microbiological parameters in the soil and water were investigated, and the agro-physiological characteristics of the maize crops were assessed. The findings revealed significant differences in physicochemical and microbial parameters within both water and soil, as well as in the physiological responses of the maize crop, among the three water treatments. TWW's quality met the permissible limits for direct wastewater discharge, as prescribed by Moroccan norms, making it suitable for potential irrigation reuse. Moreover, the higher content of key elements (Na, K, Ca, and Mg) in WW indicated that TWW was more suitable for irrigation. Zea mays irrigated with RWW and TWW exhibited a higher accumulation of protein and sugar content compared to WW irrigation. Furthermore, the biomass parameters, including root, aerial, and grain dry weight, showed a positive effect on Zea mays irrigated with RWW and TWW compared to WW. Total chlorophyll content, on the other hand, was highest in plants irrigated with WW, followed by TWW. Plants irrigated with RWW produced the highest amounts of nitrogen, phosphorus, and potassium. Conversely, plants irrigated with WW had a higher content of Ca, Na, and Mg. TWW yielded medium concentrations of N, P, K, Ca, Mg, and Na compared to RWW and WW, attributed to the nutrients provided by irrigation with TWW using the hybrid MSL technology. In conclusion, aside from their use as irrigation water, treated wastewater emerges as a valuable source of plant nutrients and soil fertilizers. They offer significant nutritive value, enhancing plant growth, reducing the need for additional fertilizer application, lowering mineral fertilization costs, and increasing the productivity of infertile soils. This highlights the potential of treated wastewater to improve agricultural sustainability in arid regions like Morocco.


Subject(s)
Soil , Wastewater , Soil/chemistry , Zea mays , Agricultural Irrigation , Technology , Sodium
2.
J Appl Electrochem ; 53(6): 1279-1294, 2023.
Article in English | MEDLINE | ID: mdl-36644408

ABSTRACT

Abstract: In December 2019, the world experienced a new coronavirus, SARS-CoV-2, causing coronavirus disease 2019 originating from Wuhan.The virus has crossed national borders and now affects more than 200 countries and territories. Hydroxychloroquine has been considered as a drug capable of treating COVID-19. The objective of this work is to establish a simple platform for electrocatalytic detection of hydroxychloroquine in human urine samples and pharmaceutical samples (tablets) using a ZnO@CPE sensor constructed by simple and inexpensive hydrothermal methods using a square wave voltammetry method. The best results are obtained in a PBS electrolyte with irreversible behavior of the hydroxychloroquine complement and controlled by diffusion coupled with absorption phenomena. The ZnO@CPE shifts the oxidation potential of hydroxychloroquine with the formation of a single very intense peak at the position of Epa = 0.5 V/(vs Ag/AgCl) with a shift is ΔEp = 0.1 V(vs Ag/AgCl) compared to the unmodified electrode. The obtained ZnO@CPE hybrid nanocomposite was characterized by different techniques and showed excellent electrocatalytic activity and higher active surface area compared to the bare carbon paste electrode. Under the optimized experimental conditions, the ZnO@CPE sensor showed good analytical performance for the determination of trace amounts of hydroxychloroquine, a wide linearity range from 10-3 M to 0.8 × 10-6 M with a very low detection limit in the range of 1.33 × 10-7 M, satisfactory selectivity, acceptable repeatability and reproducibility. The calculated recovery and coefficient of variation for the two samples analyzed are very satisfactory, ranging from 97.6 to 102% and 1.2 to 2.3% respectively. The proposed applied method and the fabricated sensor offer the possibility to analyze traces of hydroxychloroquine in real human urine and water samples. Graphical abstract: Strategy for the electro-oxidation reaction of hydroxychloroquine on the electro-catalytic surface of the ZnO@Carbon graphite electrode and real-time detection of hydroxychloroquine.

3.
Environ Sci Pollut Res Int ; 29(50): 75716-75729, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35661304

ABSTRACT

This study aims to evaluate and monitor the efficacy of a full-scale two-stage multi-soil-layering (TS-MSL) plant in removing fecal contamination from domestic wastewater. The TS-MSL plant under investigation consisted of two units in series, one with a vertical flow regime (VF-MSL) and the other with a horizontal flow regime (HF-MSL). Furthermore, this study attempts to see whether linear model (LM) and K-nearest neighbor (KNN) model can be used to predict total coliform (TC) removal in the TS-MSL system. For 24 months, the TS-MSL system was monitored, with bimonthly measurements recorded at the inlet and outlet of each compartment. Obtained results show removal of 85% of COD, 67% of TP, 27% of TN, and 3 log units of coliforms with good system stability. Thus, the effluent meets the Moroccan water quality code for reuse in the irrigation of green spaces. In addition, as compared to LM, the KNN model (R2 = 0.988) may be considered as an effective method for predicting TC removal in the TS-MSL system. Finally, sensitivity analysis has shown that TC and dissolved oxygen level in the influent were the most influential parameters for predicting TC removal in the TS-MSL system.


Subject(s)
Soil , Wastewater , Algorithms , Bacteria , Morocco , Oxygen/analysis , Waste Disposal, Fluid/methods , Wastewater/analysis
4.
Heliyon ; 7(7): e07542, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34307950

ABSTRACT

The objective of this paper is to evaluate and optimize the experimental parameters of the electro-deposition of silver atom nuclei on a graphite carbon paste to elaborate an electrochemical sensor. The electro-deposition process was performed using the cyclic voltammetry. The electrochemical studies show that the deposited silver micro-particle array offers an excellent electro-catalytic activity towards the NO2 attractor group of the dimetridazole side chain. SEM morphological analysis of the silver deposits indicates the presence of a large number of Ag micro-particles on the graphite carbon with good nucleation. The size of the Ag micro-particles is of the order of 19,7621 µm and their distribution is normal over the entire range of the pulp. DRX analysis of the deposit also indicates that the microcrystalline structure of the silver microcrystals in the deposit is face-centered cubic. The electrochemical behavior of dimetridazole is totally irreversible, the transfer process is controlled by diffusion phenomena on the surface of the electrode covered by a silver deposit realized µAg@CPE. The analytical performance of the constructed electrode shows a good selectivity. Calibration curves for the detection of dimetridazole have been drawn in the concentration range of 3,5 × 10-4 mol/L to 10-6 mol/L using cyclic voltammetry method, with a detection and quantification limits of 6.565 × 10-7 mol/L and 2.216 × 10-6 mol/L respectively. The applicability of the constructed electrode has been tested in real samples including orange juice, tomato juice, tap water. The results obtained show a recovery rate above 94%, which is very satisfactory.

5.
RSC Adv ; 10(67): 41137-41153, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-35519220

ABSTRACT

The inhibition efficiency of benzoic acid (C1), para-hydroxybenzoic acid (C2), and 3,4-dihydroxybenzoic acid (C3) towards enhancing the corrosion resistance of austenitic AISI 316 stainless steel (SS) has been evaluated in 0.5 M HCl using weight loss (WL), open circuit potential (OCP), potentiodynamic polarization method, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analysis. The results obtained from the different experimental techniques were consistent and showed that the inhibition efficiency of these inhibitors increased with the increase in concentration in this order C3 > C2 > C1. In addition, the results of the weight loss measurements showed that these inhibitors followed the Villamil isotherm. Quantum chemical calculations and Monte Carlo simulations have also been used for further insight into the adsorption mechanism of the inhibitor molecules on Fe (110). The quantum chemical parameters have been calculated by density functional theory (DFT) at the B3LYP level of theory with 6-31G+(2d,p) and 6-31G++(2d,p) basis sets in gas and aqueous phase. Parameters such as the lowest unoccupied (E LUMO) and highest occupied (E HOMO) molecular orbital energies, energy gap (ΔE), chemical hardness (η), softness (σ), electronegativity (χ), electrophilicity (ω), and nucleophilicity (ε) were calculated and showed the anti-corrosive properties of C1, C2 and C3. Moreover, theoretical vibrational spectra were calculated to exhibit the functional hydroxyl groups (OH) in the studied compounds. In agreement with the experimental data, the theoretical results showed that the order of inhibition efficiency was C3 > C2 > C1.

6.
J Environ Sci (China) ; 20(10): 1268-72, 2008.
Article in English | MEDLINE | ID: mdl-19143354

ABSTRACT

The present study has been undertaken to evaluate the adsorption in batch mode of a disperse dye (Disperse Blue SBL) by poorly crystalline hydroxyapatite synthesized by coprecipitation between Ca(NO3)2 and (NH4)2HPO4 reagents in aqueous solution at room temperature. The adsorption experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent dosage, initial dye concentration, solution temperature, and pH. The experimental results show that the percentage of dye removal increases with increasing the amount of adsorbent, until the total discoloration. The adsorption isotherms follow the model of Langmuir with a high adsorption capacity. The adsorption was pH and temperature dependent.


Subject(s)
Anthraquinones/chemistry , Coloring Agents/chemistry , Durapatite/chemistry , Phthalimides/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Durapatite/chemical synthesis , Hydrogen-Ion Concentration , Kinetics , Temperature , Water/chemistry , X-Ray Diffraction
7.
J Colloid Interface Sci ; 286(2): 621-6, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15897080

ABSTRACT

The photocatalytic oxidation of 2-naphthol has been investigated at room temperature in a dynamic photoreactor with system UV/O2 (air) and aqueous suspension of titanium dioxide TiO2 irradiated under a variety of conditions. The kinetics of disappearance of pollutant were affected by several operating parameters such as TiO2 mass, concentration of the substrate and reaction pH. The experiments were measured by high performance liquid chromatography. A Langmuir-Hinshelwood model was found to be accurate for photocatalytic degradation and indicates that adsorption of the solute on the surface of semiconductor particles plays a role in photocatalytic reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...