Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 12(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34832686

ABSTRACT

Home-based hand rehabilitation has excellent potential as it may reduce patient dropouts due to travel, transportation, and insurance constraints. Being able to perform exercises precisely, accurately, and in a repetitive manner, robot-aided portable devices have gained much traction these days in hand rehabilitation. However, existing devices fall short in allowing some key natural movements, which are crucial to achieving full potential motion in performing activities of daily living. Firstly, existing exoskeleton type devices often restrict or suffer from uncontrolled wrist and forearm movement during finger exercises due to their setup of actuation and transmission mechanism. Secondly, they restrict passive metacarpophalangeal (MCP) abduction-adduction during MCP flexion-extension motion. Lastly, though a few of them can provide isolated finger ROM, none of them can offer isolated joint motion as per therapeutic need. All these natural movements are crucial for effective robot-aided finger rehabilitation. To bridge these gaps, in this research, a novel lightweight robotic device, namely "Flexohand", has been developed for hand rehabilitation. A novel compliant mechanism has been developed and included in Flexohand to compensate for the passive movement of MCP abduction-adduction. The isolated and composite digit joint flexion-extension has been achieved by integrating a combination of sliding locks for IP joints and a wire locking system for finger MCP joints. Besides, the intuitive design of Flexohand inherently allows wrist joint movement during hand digit exercises. Experiments of passive exercises involving isolated joint motion, composite joint motions of individual fingers, and isolated joint motion of multiple fingers have been conducted to validate the functionality of the developed device. The experimental results show that Flexohand addresses the limitations of existing robot-aided hand rehabilitation devices.

2.
Micromachines (Basel) ; 12(8)2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34442492

ABSTRACT

The design of an upper limb rehabilitation robot for post-stroke patients is considered a benchmark problem regarding improving functionality and ensuring better human-robot interaction (HRI). Existing upper limb robots perform either joint-based exercises (exoskeleton-type functionality) or end-point exercises (end-effector-type functionality). Patients may need both kinds of exercises, depending on the type, level, and degree of impairments. This work focused on designing and developing a seven-degrees-of-freedom (DoFs) upper-limb rehabilitation exoskeleton called 'u-Rob' that functions as both exoskeleton and end-effector types device. Furthermore, HRI can be improved by monitoring the interaction forces between the robot and the wearer. Existing upper limb robots lack the ability to monitor interaction forces during passive rehabilitation exercises; measuring upper arm forces is also absent in the existing devices. This research work aimed to develop an innovative sensorized upper arm cuff to measure the wearer's interaction forces in the upper arm. A PID control technique was implemented for both joint-based and end-point exercises. The experimental results validated both types of functionality of the developed robot.

3.
J Hand Ther ; 33(2): 209-219, 2020.
Article in English | MEDLINE | ID: mdl-32451172

ABSTRACT

STUDY DESIGN: Descriptive. INTRODUCTION: Rehabilitation programs that focus on motor recovery of the upper limb require long-term commitment from the clinicians/therapists, require one-to-one caring, and are usually labor-intensive. PURPOSE OF THE STUDY: To contribute to this area, we have developed a sensored hand glove integrated with a computer game (Flappy Bird) to engage patients playing a game where the subject's single/multiple fingers are involved, representing fine motor skill occupational therapeutic exercises. METHODS: We described the sensored rehab glove, its hardware design, electrical and electronic design and instrumentation, software design, and pilot testing results. RESULTS: Experimental results supported that the developed rehab glove system can be effectively used to engage a patient playing a computer game (or a mobile phone game) that can record the data (ie, game score, finger flexion/extension angle, time spent in a therapeutic session, etc.) and put it in a format that could be easily read by a therapist or displayed to the therapists/patients in different graph formats. CONCLUSIONS: We introduced a sensored rehab glove for home-based therapy. The exercise training using the glove is repetitious, functional, and easy to follow and comply with.


Subject(s)
Exercise Therapy/instrumentation , Hand/physiology , Motor Skills/physiology , Occupational Therapy/instrumentation , Video Games , Adolescent , Adult , Equipment Design , Female , Home Care Services , Humans , Male , Proof of Concept Study , Software
4.
J Rehabil Assist Technol Eng ; 6: 2055668319862151, 2019.
Article in English | MEDLINE | ID: mdl-31413864

ABSTRACT

INTRODUCTION: The aim of this research is to develop a robot-assistive training approach for the disabled individuals with impaired upper limb functions. People with impaired upper limb function can regain their motor functionality undergoing intense rehabilitation exercises. With increasing number of disabled individuals, we face deficiency in the number of expert therapists. One promising remedy could be the use of robotic assistive devices. METHOD: To instruct and demonstrate rehabilitation exercise, this research used NAO robot. A library of recommended rehabilitation exercises involving shoulder (i.e., abduction/adduction, vertical flexion/extension, and internal/external rotation), and elbow (i.e., flexion/extension) joint movements was formed in Choregraphe (graphical programming interface). For this purpose, a kinematic model of human upper-extremity was developed based on modified Denavit-Hartenberg notations. RESULT: In experiments, NAO robot gave voice instruction and was maneuvered to cooperate and demonstrate the exercises from the library. NAO also plays some complex game with the subject that represents a multi-joint movement's exercise, which was also included in the library. CONCLUSIONS: Experimental results with healthy participants reveal that the NAO robot can successfully instruct and demonstrate upper-extremity rehabilitation exercises for single and multi-joint movements. It implies a technical development of cooperative rehabilitation system for which target group will be individuals with upper limb impairment.

SELECTION OF CITATIONS
SEARCH DETAIL
...