Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 5(5): 1700560, 2018 May.
Article in English | MEDLINE | ID: mdl-29876203

ABSTRACT

Despite the multitude of stents implanted annually worldwide, the most common complication called in-stent restenosis still poses a significant risk to patients. Here, a "smart" stent equipped with microscale sensors and wireless interface is developed to enable continuous monitoring of restenosis through the implanted stent. This electrically active stent functions as a radiofrequency wireless pressure transducer to track local hemodynamic changes upon a renarrowing condition. The smart stent is devised and constructed to fulfill both engineering and clinical requirements while proving its compatibility with the standard angioplasty procedure. Prototypes pass testing through assembly on balloon catheters withstanding crimping forces of >100 N and balloon expansion pressure up to 16 atm, and show wireless sensing with a resolution of 12.4 mmHg. In a swine model, this device demonstrates wireless detection of blood clot formation, as well as real-time tracking of local blood pressure change over a range of 108 mmHg that well covers the range involved in human. The demonstrated results are expected to greatly advance smart stent technology toward its clinical practice.

2.
Biomed Microdevices ; 16(5): 745-59, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24903011

ABSTRACT

This paper reports a sensor-integrated telemetric stent targeted at wireless detection and monitoring of restenosis, a common vascular complication induced by stent implantation. The developed "smart" stent incorporates the design and fabrication approaches that raise the practicality of the device, being tested in an in vivo study that validates its operating principle. The stent is produced to have a gold-coated helical-like structure that serves as a high-performance inductor/antenna and integrated with a novel capacitive pressure sensor chip, all based on medical-grade stainless steel. The stent device forms an inductor-capacitor resonant tank that enables radio-frequency (RF) wireless pressure sensing in an operating frequency range of 30-80 MHz. With an overall length of 20 mm, the device is designed to be compatible with standard balloon catheters and necessary crimping process. The balloon-expanded devices are characterized in saline and blood to determine selective coating of passivation layer, Parylene C, with tailored thicknesses in order to maximize both RF and sensing abilities. In vitro testing of the devices reveals a frequency sensitivity up to 146 ppm/mmHg over a pressure range of 250 mmHg. Tests in pig models show wireless detection of device's resonance and frequency response to variations in local blood pressure, the targeted function of the device.


Subject(s)
Blood Pressure Monitors , Remote Sensing Technology , Stents , Blood Pressure Determination/instrumentation , Blood Pressure Determination/methods , Humans , Remote Sensing Technology/instrumentation , Remote Sensing Technology/methods
3.
Article in English | MEDLINE | ID: mdl-24110983

ABSTRACT

Localized temperature control and heater interface remain challenges in centrifugal microfluidics and integrated lab-on-a-chip devices. This paper presents a new wireless heating method that enables selective activation of micropatterned resonant heaters using external radiofrequency (RF) fields and its applications. The wireless heaters in an array are individually activated by modulating the frequency of the external field. Temperature of 93 °C is achieved in the heater when resonated with a 0.49-W RF output power. The wireless method is demonstrated to be fully effective for heating samples under spinning at high speeds, showing its applicability to centrifugal systems. Selective sterilization of Escherichia coli through the wireless heating is also demonstrated. Healthcare applications with a focus on wound sterilization are discussed along with preliminary experiments, showing promising results.


Subject(s)
Centrifugation/instrumentation , Escherichia coli/radiation effects , Microfluidic Analytical Techniques/instrumentation , Sterilization/instrumentation , Wireless Technology/instrumentation , Equipment Design , Hot Temperature , Radio Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...