Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 50(20): 11094-11102, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27611635

ABSTRACT

Metal oxides exhibit catalytic activity for the formation of environmentally persistent free radicals (EPFRs). Here, we investigate, via first-principles calculations, the activity of alumina α-Al2O3(0001) surface toward formation of phenolic EPFRs, under conditions relevant to cooling down zones of combustion systems. We show that, molecular adsorption of phenol on α-Al2O3(0001) entails binding energies in the range of -202 kJ/mol to -127 kJ/mol. The dehydroxylated alumina catalyzes the conversion of phenol into its phenolate moiety with a modest activation energy of 48 kJ/mol. Kinetic rate parameters, established over the temperature range of 300 to 1000 K, confirm the formation of the phenolate as the preferred pathways for the adsorption of phenol on alumina surfaces, corroborating the role of particulate matter in the cooling down zone of combustion systems in the generation of EFPRs.

2.
Environ Sci Technol ; 50(3): 1412-8, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26713881

ABSTRACT

This contribution studies partial oxidation of 2-chlorophenol on surfaces of neat silica at temperatures of 250, 350, and 400 °C; i.e., temperatures that frequently lead to catalytic formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) from their precursors. We have identified 2,6-dichlorophenol (2,6-DCPh), 2,4-dichlorophenol (2,4-DCPh), and 2,4,6-trichlorophenol (2,4,6-TriCPh), but have detected no chlorinated benzenes (CBzs). The detected chlorinated and nonchlorinated DD/Fs comprise dibenzo-p-dioxin (DD), 1- and 2-monochlorodibenzo-p-dioxin (1-, 2-MCDD), 1,6-, 1,9-, 1,3-dichlorodibenzo-p-dioxin (1,6-, 1,9-, 1,3-DCDD), 4-monochlorodibenzofuran (4-MCDF), and 4,6-dichlorodibenzofuran (4,6-DCDF) at the reaction temperatures of 350 and 400 °C. However, at a lower reaction temperature, 250 °C, we have detected no PCDD/Fs. We have demonstrated that neat silica surfaces catalyze the generation of PCDD/Fs from chlorophenols at the upper range of the catalytic formation temperature of PCDD/F. The present finding proves the generation of PCDD/Fs on particles of fly ash, even in the absence of transition metals.


Subject(s)
Benzofurans/chemistry , Chlorophenols/chemistry , Dioxins/chemistry , Coal Ash , Dibenzofurans, Polychlorinated , Halogenation , Incineration , Oxidation-Reduction , Phenols , Silicon Dioxide , Temperature
3.
J Phys Chem A ; 115(48): 14092-9, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-22026587

ABSTRACT

Motivated by the necessity to understand the pyrolysis of alkylated amines, unimolecular decomposition of acetamide is investigated herein as a model compound. Standard heats of formation, entropies, and heat capacities, are calculated for all products and transition structures using several accurate theoretical levels. The potential energy surface is mapped out for all possible channels encountered in the pyrolysis of acetamide. The formation of acetamedic acid and 1-aminoethenol and their subsequent decomposition pathways are found to afford the two most energetically favored pathways. However, RRKM analysis shows that the fate of acetamedic acid and 1-aminoethenol at all temperatures and pressures is to reisomerize to the parent acetamide. 1-Aminoethenol, in particular, is predicted to be a long-lived species enabling its participation in bimolecular reactions that lead to the formation of the major experimental products. Results presented herein reflect the importance of bimolecular reactions involving acetamide and 1-aminoethenol in building a robust model for the pyrolysis of N-alkylated amides.


Subject(s)
Acetamides/chemistry , Chemistry, Organic , Gases/chemistry , Models, Molecular , Hot Temperature , Isomerism , Kinetics , Pressure , Quantum Theory , Thermodynamics
4.
J Comput Chem ; 32(12): 2708-15, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21647931

ABSTRACT

The potential energy surface for the unimolecular decomposition of thiophenol (C(6)H(5)SH) is mapped out at two theoretical levels; BB1K/GTlarge and QCISD(T)/6-311+G(2d,p)//MP2/6-31G(d,p). Calculated reaction rate constants at the high pressure limit indicate that the major initial channel is the formation of C(6)H(6)S at all temperatures. Above 1000 K, the contribution from direct fission of the S-H bond becomes important. Other decomposition channels, including expulsion of H(2) and H(2)S are of negligible importance. The formation of C(6)H(6)S is predicted to be strong-pressure dependent above 900 K. Further decomposition of C(6)H(6)S produces CS and C(5)H(6). Overall, despite the significant difference in bond dissociation, i.e., 8-9 kcal/mol between the S-H bond in thiophenol and the O-H bond in phenol, H migration at the ortho position in the two molecules represents the most accessible initial channel.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Models, Theoretical , Phenols/chemistry , Sulfhydryl Compounds/chemistry , Sulfides/chemistry , Kinetics , Models, Chemical , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...