Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9845, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684750

ABSTRACT

Fixed dose combinations (FDCs) incorporating two or three medicines in a single inhaler have been created to enhance patient compliance and hence clinical outcomes. However, the development of dry powder inhalers (DPIs), particularly for FDCs, faces challenges pertinent to formulation uniformity and reproducibility. Therefore, this project aimed to employ nanotechnology to develop a FDC of DPIs for market-leading medicines-fluticasone propionate (FP) and salmeterol xinafoate (SAL)-for asthma management. Nanoaggregates were prepared using a novel biocompatible and biodegradable poly(ester amide) based on the amino acid tyrosine, utilising a one-step interfacial polymerisation process. The produced tyrosine poly (ester amide) drug-loaded nanoparticles were evaluated for content uniformity, PSA, FTIR, TEM, DSC, XRD and aerodynamic performance (in vitro and in vivo). The optimised formulation demonstrated high entrapment efficiency- > 90%. The aerodynamic performance in terms of the emitted dose, fine particle fraction and respirable dose was superior to the carrier-based marketed product. In-vivo studies showed that FP (above the marketed formulation) and SAL reached the lungs of mice in a reproducible manner. These results highlight the superiority of novel FDC FP/SAL nanoparticles prepared via a one-step process, which can be used as a cost-effective and efficient method to alleviate the burden of asthma.


Subject(s)
Nanoparticles , Tyrosine , Animals , Nanoparticles/chemistry , Tyrosine/chemistry , Tyrosine/analogs & derivatives , Administration, Inhalation , Lung/metabolism , Lung/drug effects , Mice , Asthma/drug therapy , Polyesters/chemistry , Polyesters/chemical synthesis , Dry Powder Inhalers , Fluticasone/chemistry , Fluticasone/administration & dosage , Drug Delivery Systems , Salmeterol Xinafoate/chemistry , Salmeterol Xinafoate/administration & dosage , Particle Size , Drug Carriers/chemistry
2.
AAPS PharmSciTech ; 25(4): 69, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538972

ABSTRACT

Thymoquinone (TQ) is a phytochemical compound present in Nigella sativa and has potential benefits for treating dermatological conditions such as psoriasis. However, its clinical use is limited due to its restricted bioavailability, caused mainly by its low solubility and permeability. To overcome this, a new transdermal drug delivery system is required. Nanoparticles are known to enhance material solubility and permeability, and hence, this study aimed to synthesize TQ-loaded L-arginine-based polyamide (TQ/Arg PA) nanocapsules incorporated into transdermal patches for prolonged delivery of TQ. To achieve this, Eudragit E polymer, plasticizers, and aloe vera as penetration enhancer were used to develop the transdermal patch. Furthermore, novel TQ/Arg-PA was synthesized via interfacial polymerization, and the resultant nanocapsules (NCs) were incorporated into the matrix transdermal patch. The Arg-PA NCs' structure was confirmed via NMR and FTIR, and optimal TQ/Arg-PA NCs containing formulation showed high entrapment efficiency of TQ (99.60%). Molecular and thermal profiling of TQ/Arg-PA and the transdermal patch revealed the effective development of spherical NCs with an average particle size of 129.23 ± 18.22 nm. Using Franz diffusion cells and synthetic membrane (STRAT M®), the in vitro permeation profile of the prepared patches demonstrated an extended release of TQ over 24 h, with enhanced permeation by 42.64% when aloe vera was employed. In conclusion, the produced formulation has a potential substitute for corticosteroids and other drugs commonly used to treat psoriasis due to its effectiveness, safety, and lack of the side effects typically associated with other drugs.


Subject(s)
Benzoquinones , Nanocapsules , Psoriasis , Humans , Nanocapsules/chemistry , Nylons , Transdermal Patch , Psoriasis/drug therapy
3.
AAPS PharmSciTech ; 23(6): 210, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35902492

ABSTRACT

Transdermal drug delivery systems (TDDSs) were developed for prolonged tamsulosin (TMS) delivery. Double layer (DL) TDDSs were prepared using Eudragit® RL by conventional film-forming. Ethylene-vinyl acetate was used as the backing layer, triethylcitrate as plasticizer, and Capmul® PG-8-70 NF and Captex 170 EP as penetration enhancers (PEs). An increase in either drug or PE concentration caused a significant increase in drug permeation flux. Modulation of drug permeation across Strat-M® membrane was examined using a single layer (SL) having the same thickness and drug content as the DLs, while the DLs were formulated to have variable drug spatial distribution across each layer (DL 4:6 and DL 6:4). SL/TDDS showed significantly higher daily drug permeation than DL/TDDSs for the first 4 days which could be related to the presence of high TMS concentration located on the upper surface of SL/TDDS as a result of solute migration of TMS during the drying process. However, this increase was followed by a progressive linear decrease after 5 days. Deflection points that were characterized by lower drug flux had been shown by SL/TDDS at more than one-point times. In contrast, DL 4:6 and DL 6:4 TDDSs demonstrated an ability to sustain TMS delivery for up to 2 weeks.


Subject(s)
Polymers , Polymethacrylic Acids , Administration, Cutaneous , Drug Delivery Systems , Skin , Tamsulosin , Transdermal Patch
4.
AAPS PharmSciTech ; 22(8): 253, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34668082

ABSTRACT

This project aims to prepare hydrogel microneedle patches (MNs) as a painless method to deliver carbamazepine transdermally. This can be used as a sustained release system that offers the advantages of lower gastrointestinal side effects and avoids the first-pass metabolism of the drug. MNs were composed of two medicated layers, a microneedle layer and a base layer. MNs were fabricated using polyvinyl alcohol with or without polyvinylpyrrolidone Kollidon 30 as a matrix polymer and in the presence of selected solubilizing agent (polyethylene glycol 400, Tween 80, or α-tocopherol polyethylene glycol). Freezing-thawing cycle was evaluated as one of the processing parameters that may affect the drug release. The MNs were evaluated for their weight variation, base thickness, and content uniformity. The physicochemical compatibility between carbamazepine and the polymers was estimated by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and X-ray powder diffraction. Evaluation for the in vitro release studies and ex vivo permeation studies was performed. The prepared MNs were flexible, clear, and uniform in weight, base thickness, and drug content. Physicochemical characterizations showed that carbamazepine was amorphous in most of the MNs. In vitro release and ex vivo permeation studies of carbamazepine were significantly higher for MNs containing a combination of 1:1 w/w of PEG 400 and Tween 80 as solubilizing agents where the release was extended over 96 h, with the release of 85.2% and 59.6% permeation percentage compared to other MNs. A significant effect of the freezing-thawing cycle on the release profile of the drug was observed. The hydrogel MNs are shown to be stable under the studied storage conditions.


Subject(s)
Drug Delivery Systems , Needles , Administration, Cutaneous , Carbamazepine , Drug Liberation
5.
Pharm Dev Technol ; 24(6): 761-774, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30888873

ABSTRACT

It was aimed to investigate the compressibility, compactibility, powder flow and tablet disintegration of a new excipient comprising magnesium (Mg) silicate co-processed (5%-85% w/w) onto chitin, microcrystalline cellulose (MCC) and starch as the hydrophilic polymers of interest. Initially, the mechanism of tablet disintegration was studied by measuring water infiltration rate, moisture sorption, swelling capacity and hydration ability. Moreover, the powders compression behavior was carried out by applying Kawakita model of compression analysis in addition to porosity and radial tensile strength measurements. In vitro drug release of compacts made of 400 mg ibuprofen and 300 mg of the hydrophilic polymers containing 30% w/w Mg silicate co-precipitate was investigated in phosphate buffer (pH 7.8). This work demonstrated that the incorporation of Mg silicate to the hydrophilic polymers lead to the improvement of powder flowability, compactibility, stability (with regard to storage conditions), compacts crushing strength, and disintegration time in addition to faster drug release. The overall findings are practically advantageous in the context of finding a low cost and multifunctional co-processed excipient of natural origins.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Cellulose/chemistry , Chitin/chemistry , Ibuprofen/administration & dosage , Magnesium/chemistry , Silicates/chemistry , Starch/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Drug Compounding/methods , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Ibuprofen/chemistry , Porosity , Tensile Strength
6.
Pharm Dev Technol ; 18(4): 897-905, 2013.
Article in English | MEDLINE | ID: mdl-22304659

ABSTRACT

There has been growing interest in orally disintegrating tablets (ODTs) during the last decade due to their better patient acceptance and compliance. Further, drug dissolution and absorption may be significantly improved. This work describes the preparation of fast and pH-dependent release ODTs for domperidone by direct compression using crospovidone as superdisintegrant. Solid dispersions of domperidone and Eudragit L100-55, at different weight ratios, were prepared and characterized by DSC, TGA, X-ray diffraction, and FTIR, which indicated the presence of drug-polymer interaction. Disintegration time, friability, and hardness of ODTs were evaluated. In vitro drug release in 0.1N HCl and in phosphate buffer (pH 5.8 and 6.8) was investigated. All domperidone ODTs had fast disintegration times (6 KP) and acceptable friability (<1%). Drug release from fast release ODTs was highly improved; reaching 97% after 10 min in 0.1N HCl, compared to the dissolution of the free drug. Drug release from solid dispersions was pH dependent; showing higher release rates at pH 6.8 than at lower pH values. The controlled-release ODT resulted in 47% drug release in 0.1N HCl, with the rest of drug released at pH 6.8. Domperidone ODTs were considered suitable for ODT formulation.


Subject(s)
Acrylic Resins/chemistry , Domperidone/chemistry , Dopamine Antagonists/chemistry , Excipients/chemistry , Administration, Oral , Calorimetry, Differential Scanning , Delayed-Action Preparations , Domperidone/administration & dosage , Dopamine Antagonists/administration & dosage , Drug Compounding , Hardness , Hydrogen-Ion Concentration , Povidone/chemistry , Spectroscopy, Fourier Transform Infrared , Tablets , Thermogravimetry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...