Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 17(10): 6062-6068, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28892396

ABSTRACT

One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.

2.
Nano Lett ; 17(3): 1538-1544, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28165747

ABSTRACT

Group IV semiconductor optoelectronic devices are now possible by using strain-free direct band gap GeSn alloys grown on a Ge/Si virtual substrate with Sn contents above 9%. Here, we demonstrate the growth of Ge/GeSn core/shell nanowire arrays with Sn incorporation up to 13% and without the formation of Sn clusters. The nanowire geometry promotes strain relaxation in the Ge0.87Sn0.13 shell and limits the formation of structural defects. This results in room-temperature photoluminescence centered at 0.465 eV and enhanced absorption above 98%. Therefore, direct band gap GeSn grown in a nanowire geometry holds promise as a low-cost and high-efficiency material for photodetectors operating in the short-wave infrared and thermal imaging devices.

3.
Nano Lett ; 17(2): 599-605, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28002677

ABSTRACT

The functionality of semiconductor devices is determined by the incorporation of dopants at concentrations down to the parts per million (ppm) level and below. Optimization of intentional and unintentional impurity doping relies on methods to detect and map the level of impurities. Detecting such low concentrations of impurities in nanostructures is however challenging to date as on the one hand methods used for macroscopic samples cannot be applied due to the inherent small volumes or faceted surfaces and on the other hand conventional microscopic analysis techniques are not sufficiently sensitive. Here, we show that we can detect and map impurities at the ppm level in semiconductor nanowires using atom probe tomography. We develop a method applicable to a wide variety of nanowires relevant for electronic and optical devices. We expect that it will contribute significantly to the further optimization of the synthesis of nanowires, nanostructures and devices based on these structures.

4.
Nano Lett ; 16(12): 7930-7936, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960532

ABSTRACT

Thanks to their uniqueness, nanowires allow the realization of novel semiconductor crystal structures with yet unexplored properties, which can be key to overcome current technological limits. Here we develop the growth of wurtzite GaP/InxGa1-xP core-shell nanowires with tunable indium concentration and optical emission in the visible region from 590 nm (2.1 eV) to 760 nm (1.6 eV). We demonstrate a pseudodirect (Γ8c-Γ9v) to direct (Γ7c-Γ9v) transition crossover through experimental and theoretical approach. Time resolved and temperature dependent photoluminescence measurements were used, which led to the observation of a steep change in carrier lifetime and temperature dependence by respectively one and 3 orders of magnitude in the range 0.28 ± 0.04 ≤ x ≤ 0.41 ± 0.04. Our work reveals the electronic properties of wurtzite InxGa1-xP.

5.
Nano Lett ; 16(6): 3703-9, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27175743

ABSTRACT

Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material.

6.
Nano Lett ; 15(12): 8062-9, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26539748

ABSTRACT

The growth of wurtzite/zincblende (WZ and ZB, respectively) superstructures opens new avenues for band structure engineering and holds the promise of digitally controlling the energy spectrum of quantum confined systems. Here, we study growth kinetics of pure and thus defect-free WZ/ZB homostructures in GaP nanowires with the aim to obtain monolayer control of the ZB and WZ segment lengths. We find that the Ga concentration and the supersaturation in the catalyst particle are the key parameters determining growth kinetics. These parameters can be tuned by the gallium partial pressure and the temperature. The formation of WZ and ZB can be understood with a model based on nucleation either at the triple phase line for the WZ phase or in the center of the solid-liquid interface for the ZB phase. Furthermore, the observed delay/offset time needed to induce WZ and ZB growth after growth of the other phase can be explained within this framework.

7.
Nano Lett ; 15(5): 2974-9, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25922878

ABSTRACT

Semiconductor nanowires have increased the palette of possible heterostructures thanks to their more effective strain relaxation. Among these, core-shell heterostructures are much more sensitive to strain than axial ones. It is now accepted that the formation of misfit dislocations depends both on the lattice mismatch and relative dimensions of the core and the shell. Here, we show for the first time the existence of a new kind of defect in core-shell nanowires: cracks. These defects do not originate from a lattice mismatch (we demonstrate their appearance in an essentially zero-mismatch system) but from the thermal history during the growth of the nanowires. Crack defects lead to the development of secondary defects, such as type-I1 stacking faults and Frank-type dislocations. These results provide crucial information with important implications for the optimized synthesis of nanowire-based core-shell heterostructures.

8.
Nano Lett ; 13(4): 1559-63, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23464761

ABSTRACT

The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555-690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality.


Subject(s)
Crystallization , Gallium/chemistry , Nanowires/chemistry , Phosphines/chemistry , Particle Size , Silicon/chemistry
9.
Nanotechnology ; 23(49): 495305, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23154816

ABSTRACT

The factors affecting transfer of nanowire arrays from their substrates into flexible PDMS films have been systematically investigated. Experiments were carried out on gallium phosphide nanowires with a standard length of 10 µm with varying pitch (0.2-1.5 µm). The important factors were found to be penetration of the PDMS within the nanowire arrays and the strength/rigidity of the PDMS film. The PDMS penetration between wires in the arrays is affected by both the viscosity of the PDMS solution and the presence of air pockets trapped within nanowire arrays, particularly at small pitches. Dilution with hexane and curing in a vacuum desiccator solve the wire penetration problem, and an increase in cure/base ratio increases the rigidity and strength of the PDMS. The procedures for preparation and deposition of the PDMS solution are optimized and a high yield, up to 95%, of wire transfer across a range of nanowire pitches has been obtained.


Subject(s)
Crystallization/methods , Dimethylpolysiloxanes/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nylons/chemistry , Elastic Modulus , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...