Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Eng Online ; 18(1): 22, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30866955

ABSTRACT

BACKGROUND: The resources of ultrafast technology can be used to add another analysis to ultrasound imaging: assessment of tissue viscoelasticity. Ultrafast image formation can be utilized to find transitory shear waves propagating in soft tissue, which permits quantification of the mechanical properties of the tissue via elastography. This technique permits simple and noninvasive diagnosis and monitoring of disease. METHODS: This article presents a method to estimate the viscoelastic properties and rigidity of structures using the ultrasound technique known as shear wave elasticity imaging (SWEI). The Verasonics Vantage 128 research platform and L11-4v transducer were used to acquire radio frequency signals from a model 049A elastography phantom (CIRS, USA), with subsequent processing and analysis in MATLAB. RESULTS: The images and indexes obtained reflect the qualitative measurements of the different regions of inclusions in the phantom and the respective alterations in the viscoelastic properties of distinct areas. Comparison of the results obtained with this proposed technique and other commonly used techniques demonstrates the characteristics of median filtering in smoothing variations in velocity to form elastographic images. The results from the technique proposed in this study are within the margins of error indicated by the phantom manufacturer for each type of inclusion; for the phantom base and for type I, II, III, and IV inclusions, respectively, in kPa and percentage errors, these are 25 (24.0%), 8 (37.5%), 14 (28.6%), 45 (17.8%), and 80 (15.0%). The values obtained using the method proposed in this study and mean percentage errors were 29.18 (- 16.7%), 10.26 (- 28.2%), 15.64 (- 11.7%), 45.81 (- 1.8%), and 85.21 (- 6.5%), respectively. CONCLUSIONS: The new technique to obtain images uses a distinct filtering function which considers the mean velocity in the region around each pixel, in turn allowing adjustments according to the characteristics of the phantom inclusions within the ultrasound and optimizing the resulting elastographic images.


Subject(s)
Elasticity Imaging Techniques , Image Processing, Computer-Assisted/methods , Algorithms , Phantoms, Imaging , Time Factors
2.
Sensors (Basel) ; 18(11)2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30373306

ABSTRACT

Ultrasonic imaging is one of the most important techniques to help medical diagnosis. However, obtaining high quality images requires the acquisition, processing, and storage of a large amount of data. In this work, we evaluated a new ultrasound imaging technique based on plane wave and sparse arrays to increase the scan rate and reduce the amount of data amount to be stored. The performance of the proposed method was tested using simulated echo data (from Field II) and phantom data acquired using a Verasonics system equipped with a L11-4v linear array transducer. The tests were done using 128 elements for transmission and 128, 65, 44, and 23 elements sparsely distributed for reception. The simulated data were compared with images obtained with the Delay and Sum (DAS) method and the experimental data were compared with those acquired from Verasonics. The obtained results using the Full Width at Half Maximum (FWHM) criteria at -6 dB showed that the images generated by the proposed method were similar in terms of resolutions (axial and lateral) and contrast to the simulated and the Verasonics commercial ones, indicating that the sparse reception proposed method is suitable for ultrasound imaging.

3.
Biomed Eng Online ; 12: 24, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23514530

ABSTRACT

BACKGROUND: In ultrasound imaging systems, the digital transmit beamformer is a critical module that generates accurate control over several transmission parameters. However, such transmit front-end module is not typically accessible to ultrasound researchers. To overcome this difficulty, we have been developing a compact and fully programmable digital transmit system using the pulse-width modulation (PWM) technique for generating simultaneous arbitrary waveforms, specifically designed for research purposes. METHODS: In this paper we present a reconfigurable arbitrary waveform generator (RAWG) for ultrasound research applications that exploits a high frequency PWM scheme implemented in a low-cost FPGA, taking advantage of its flexibility and parallel processing capability for independent controlling of multiple transmission parameters. The 8-channel platform consists of a FPGA-based development board including an USB 2.0 interface and an arbitrary waveform generator board with eight MD2130 beamformer source drivers for individual control of waveform, amplitude apodization, phase angle and time delay trigger. RESULTS: To evaluate the efficiency of our system, we used equivalent RC loads (1 kΩ and 220 pF) to produce arbitrary excitation waveforms with the Gaussian and Tukey profiles. The PWM carrier frequency was set at 160 MHz featuring high resolution while keeping a minimum time delay of 3.125 ns between pulses to enable the acoustic beam to be focused and/or steered electronically. Preliminary experimental results show that the RAWG can produce complex arbitrary pulses with amplitude over 100 Vpp and central frequency up to 20 MHz with satisfactory linearity of the amplitude apodization, as well as focusing phase adjustment capability with angular resolution of 7.5°. CONCLUSIONS: The initial results of this study showed that the proposed research system is suitable for generating simultaneous arbitrary waveforms, providing extensive user control with direct digital access to the various transmission parameters needed to explore alternative ultrasound transmission techniques.


Subject(s)
Signal Processing, Computer-Assisted/instrumentation , Ultrasonics/methods , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...