Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
N Biotechnol ; 70: 57-66, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35533829

ABSTRACT

Polyhydroxyalkanoates (PHAs) are natural biodegradable polyesters that are produced by numerous prokaryotic microorganisms primarily as a carbon- and energy reserve. The PhaC enzyme catalyzes the last step in the PHA biosynthesis pathway and synthesizes PHA polymers from hydroxyalkanoic acids. A type I PhaC from a PHA-producing marine bacterium Brevundimonas sp. KH11J01 (BrPhaC) was identified, produced recombinantly and characterized. Its properties were compared with its homolog from C. necator H16 (RePhaC). Unlike other PhaCs, it was found that BrPhaC is a lag-phase free enzyme organized as a trimer, even without the presence of a substrate. The enzymatic reaction is initiated instantly irrespective of temperature, in contrast to RePhaC in which the duration of the lag-phase was highly affected by temperature. At 10 °C BrPhaC was 40% active whereas RePhaC was barely active. The significance of using marine microorganisms, harboring cold-active PHA biosynthesis enzymes, for energy efficient PHA production, is also discussed briefly. The unique trimeric organization of BrPhaC challenges our understanding of the PhaC reaction mechanisms, which is mainly based on the crystal structures of the inactive forms of the enzyme.


Subject(s)
Cupriavidus necator , Polyhydroxyalkanoates , Acyltransferases/metabolism , Cupriavidus necator/metabolism , Polyesters/metabolism
2.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 8): 2093-100, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25084329

ABSTRACT

Uracil-DNA N-glycosylase from Atlantic cod (cUNG) shows cold-adapted features such as high catalytic efficiency, a low temperature optimum for activity and reduced thermal stability compared with its mesophilic homologue human UNG (hUNG). In order to understand the role of the enzyme-substrate interaction related to the cold-adapted properties, the structure of cUNG in complex with a bacteriophage encoded natural UNG inhibitor (Ugi) has been determined. The interaction has also been analyzed by isothermal titration calorimetry (ITC). The crystal structure of cUNG-Ugi was determined to a resolution of 1.9 Šwith eight complexes in the asymmetric unit related through noncrystallographic symmetry. A comparison of the cUNG-Ugi complex with previously determined structures of UNG-Ugi shows that they are very similar, and confirmed the nucleotide-mimicking properties of Ugi. Biophysically, the interaction between cUNG and Ugi is very strong and shows a binding constant (Kb) which is one order of magnitude larger than that for hUNG-Ugi. The binding of both cUNG and hUNG to Ugi was shown to be favoured by both enthalpic and entropic forces; however, the binding of cUNG to Ugi is mainly dominated by enthalpy, while the entropic term is dominant for hUNG. The observed differences in the binding properties may be explained by an overall greater positive electrostatic surface potential in the protein-Ugi interface of cUNG and the slightly more hydrophobic surface of hUNG.


Subject(s)
Enzyme Inhibitors/pharmacology , Uracil-DNA Glycosidase/metabolism , Animals , Biophysics , Gadus morhua , Humans , Protein Conformation , Thermodynamics , Uracil-DNA Glycosidase/antagonists & inhibitors , Uracil-DNA Glycosidase/chemistry
3.
Article in English | MEDLINE | ID: mdl-21959147

ABSTRACT

Uracil-DNA N-glycosylase (UNG; EC 3.2.2.27) from Atlantic cod (cUNG) possesses cold adapted features like increased catalytic efficiency and reduced temperature optimum for activity compared to its warm-adapted homologue human UNG (hUNG). Here, we present the first thermal stability analysis of cUNG and hUNG by differential scanning calorimetry (DSC), and the results showed that cUNG is less stable than hUNG and unfolds at a melting temperature (T(m)) 9° lower than its warm-adapted homologue. In addition, an ion-pair (D183-K302) suggested to be crucial for global stability of hUNG was investigated by biochemical characterization and DSC of four mutants (cUNG G183D and cUNG G183D-R302K, hUNG D183G and hUNG D183G-K302R). The hUNG mutants with an expected disruption of the ion-pair showed a slight increase in stability with concomitant reduction in the enzyme activity, while the apparent introduction of the ion-pair in cUNG caused a reduction in the enzyme activity but no increase in stability. Because the mutants did not behave as expected, the phenomenon was further investigated by crystal structure determination. Indeed, the crystal structure of the hUNG D183G-K302R mutant revealed that compensating interactions for the loss of the ion-pair were generated close to and in regions distant from the mutation site. In conclusion, the reduced stability of cUNG supports the suggested requirement of a flexible structure for improved activity at low temperatures. Furthermore, the lack of a direct correlation between enzyme activity and global stability of the mutants supports the significance of distributing locally flexible and/or rigid regions for modulation of enzyme activity.


Subject(s)
Adaptation, Physiological , Cold Temperature , Gadus morhua/metabolism , Protein Unfolding , Temperature , Uracil-DNA Glycosidase/chemistry , Uracil-DNA Glycosidase/metabolism , Amino Acid Substitution/genetics , Animals , Atlantic Ocean , Biocatalysis , Buffers , Calorimetry, Differential Scanning , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Enzyme Stability , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Ions , Kinetics , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Protein Conformation , Uracil-DNA Glycosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...