Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Clin Med ; 10(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801165

ABSTRACT

Bowel function after spinal cord injury (SCI) is compromised because of a lack of voluntary control and reduction in bowel motility, often leading to incontinence and constipation not easily managed. Physical activity and upright posture may play a role in dealing with these issues. We performed a three-center, randomized, controlled, crossover clinical trial of exoskeletal-assisted walking (EAW) compared to usual activity (UA) in people with chronic SCI. As a secondary outcome measure, the effect of this intervention on bowel function was assessed using a 10-question bowel function survey, the Bristol Stool Form Scale (BSS) and the Spinal Cord Injury Quality of Life (SCI-QOL) Bowel Management Difficulties instrument. Fifty participants completed the study, with bowel data available for 49. The amount of time needed for the bowel program on average was reduced in 24% of the participants after EAW. A trend toward normalization of stool form was noted. There were no significant effects on patient-reported outcomes for bowel function for the SCI-QOL components, although the time since injury may have played a role. Subset analysis suggested that EAW produces a greater positive effect in men than women and may be more effective in motor-complete individuals with respect to stool consistency. EAW, along with other physical interventions previously investigated, may be able to play a previously underappreciated role in assisting with SCI-related bowel dysfunction.

2.
Spinal Cord Ser Cases ; 7(1): 20, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712561

ABSTRACT

STUDY DESIGN: Pre-post intervention. OBJECTIVE: To explore the potential effect of exoskeletal-assisted walking (EAW) on seated balance for persons with chronic motor complete spinal cord injury (SCI). SETTING: A SCI research center. METHODS: Eight participants who were over 18 years of age with chronic SCI and used a wheelchair for mobility were enrolled. Seven able-bodied participants were used for normal seated balance comparative values. Participants with chronic SCI received supervised EAW training using a powered exoskeleton (ReWalkTM) for a median 30 sessions (range from 7 to 90 sessions). Before and after EAW training, seated balance testing outcomes were collected using computerized dynamic posturography, providing measurements of endpoint excursion (EPE), maximal excursion (MXE), and directional control (DCL). Modified functional reach test (MFRT) and the sub-scales of physical functioning and role limitations due to physical health from the Short Form (36) Health Survey (SF-36) were used to identify changes in functional activities. RESULTS: After EAW training, seated balance significantly improved in total-direction EPE and MXE (P < 0.01 and P < 0.017 respectively). The results of MFRT and sub-scales of physical functioning and role limitations due to physical health improved after EAW training but were not statistically significant. CONCLUSIONS: EAW training may have the potential to improve seated balance for persons with chronic motor complete SCI. Due to the limitations of the study, such as small sample size and lack of a control group, further studies are needed to clarify the effect of improving seated balance through EAW training.


Subject(s)
Exoskeleton Device , Spinal Cord Injuries , Adolescent , Adult , Humans , Pilot Projects , Postural Balance , Walking
3.
Arch Phys Med Rehabil ; 102(2): 185-195, 2021 02.
Article in English | MEDLINE | ID: mdl-33181116

ABSTRACT

OBJECTIVE: To determine the cardiometabolic demands associated with exoskeletal-assisted walking (EAW) in persons with paraplegia. This study will further examine if training in the device for 60 sessions modifies cost of transport (CT). DESIGN: Prospective cohort study. Measurements over the course of a 60-session training program, approximately 20 sessions apart. SETTING: James J. Peters Bronx Veterans Affairs Medical Center, Center for the Medical Consequences of Spinal Cord Injury Research Center. PARTICIPANTS: The participants' demographics (N=5) were 37-61 years old, body mass index (calculated as weight in kilograms divided by height in meters squared) of 22.7-28.6, level of injury from T1-T11, and 2-14 years since injury. INTERVENTIONS: Powered EAW. MAIN OUTCOME MEASURES: Oxygen consumption per unit time (V˙O2, mL/min/kg), velocity (m/min), cost of transport (V˙O2/velocity), and rating of perceived exertion (RPE). RESULTS: With training: EAW velocity significantly improved (Pre: 51±51m; 0.14±0.14m/s vs Post: 99±42m; 0.28±0.12m/s, P=.023), RPE significantly decreased (Pre: 13±6 vs Post: 7±4, P=.001), V˙O2 significantly improved (Pre: 9.76±1.23 mL/kg/m vs Post: 12.73±2.30 mL/kg/m, P=.04), and CT was reduced from the early to the later stages of training (3.66±5.2 vs 0.87±0.85 mL/kg/m). CONCLUSIONS: The current study suggests that EAW training improves oxygen uptake efficiency and walking velocities, with a lower perception of exertion.


Subject(s)
Exoskeleton Device , Oxygen Consumption/physiology , Paraplegia/physiopathology , Paraplegia/therapy , Walking/physiology , Adult , Female , Humans , Male , Middle Aged , Prospective Studies
4.
Contemp Clin Trials ; 96: 106102, 2020 09.
Article in English | MEDLINE | ID: mdl-32800962

ABSTRACT

There are more than 300,000 estimated cases of spinal cord injury (SCI) in the United States, and approximately 27,000 of these are Veterans. Immobilization from SCI results in adverse secondary medical conditions and reduced quality of life. Veterans with SCI who have completed rehabilitation after injury and are unable to ambulate receive a wheelchair as standard of care. Powered exoskeletons are a technology that offers an alternative form of limited mobility by enabling over-ground walking through an external framework for support and computer-controlled motorized hip and knee joints. Few studies have reported the safety and efficacy for use of these devices in the home and community environments, and none evaluated their impact on patient-centered outcomes through a randomized clinical trial (RCT). Absence of reported RCTs for powered exoskeletons may be due to a range of challenges, including designing, statistically powering, and conducting such a trial within an appropriate experimental framework. An RCT for the study of exoskeletal-assisted walking in the home and community environments also requires the need to address key factors such as: avoiding selection bias, participant recruitment and retention, training, and safety concerns, particularly in the home environment. These points are described here in the context of a national, multisite Department of Veterans Affairs Cooperative Studies Program-sponsored trial. The rationale and methods for the study design were focused on providing a template for future studies that use powered exoskeletons or other strategies for walking and mobility in people with immobilization due to SCI.


Subject(s)
Exoskeleton Device , Spinal Cord Injuries , Humans , Knee Joint , Quality of Life , Walking
5.
Front Robot AI ; 7: 93, 2020.
Article in English | MEDLINE | ID: mdl-33501260

ABSTRACT

Background: Clinical exoskeletal-assisted walking (EAW) programs for individuals with spinal cord injury (SCI) have been established, but many unknown variables remain. These include addressing staffing needs, determining the number of sessions needed to achieve a successful walking velocity milestone for ambulation, distinguishing potential achievement goals according to level of injury, and deciding the number of sessions participants need to perform in order to meet the Food and Drug Administration (FDA) criteria for personal use prescription in the home and community. The primary aim of this study was to determine the number of sessions necessary to achieve adequate EAW skills and velocity milestones, and the percentage of participants able to achieve these skills by 12 sessions and to determine the skill progression over the course of 36 sessions. Methods: A randomized clinical trial (RCT) was conducted across three sites, in persons with chronic (≥6 months) non-ambulatory SCI. Eligible participants were randomized (within site) to either the EAW arm first (Group 1), three times per week for 36 sessions, striving to be completed in 12 weeks or the usual activity arm (UA) first (Group 2), followed by a crossover to the other arm for both groups. The 10-meter walk test seconds (s) (10MWT), 6-min walk test meters (m) (6MWT), and the Timed-Up-and-Go (s) (TUG) were performed at 12, 24, and 36 sessions. To test walking performance in the exoskeletal devices, nominal velocities and distance milestones were chosen prior to study initiation, and were used for the 10MWT (≤ 40s), 6MWT (≥80m), and TUG (≤ 90s). All walking tests were performed with the exoskeletons. Results: A total of 50 participants completed 36 sessions of EAW training. At 12 sessions, 31 (62%), 35 (70%), and 36 (72%) participants achieved the 10MWT, 6MWT, and TUG milestones, respectively. By 36 sessions, 40 (80%), 41 (82%), and 42 (84%) achieved the 10MWT, 6MWT, and TUG criteria, respectively. Conclusions: It is feasible to train chronic non-ambulatory individuals with SCI in performance of EAW sufficiently to achieve reasonable mobility skill outcome milestones.

6.
Spinal Cord ; 58(4): 459-466, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31822808

ABSTRACT

STUDY DESIGN: Prospective, observational study. OBJECTIVE: To explore the effects of exoskeletal-assisted walking (EAW) on bowel function in persons with spinal cord injury (SCI). SETTING: Ambulatory research facility located in a tertiary care hospital. METHODS: Individuals 18-65 years of age, with thoracic vertebrae one (T1) to T11 motor-complete paraplegia of at least 12 months duration were enrolled. Pre- and post-EAW training, participants were asked to report on various aspects of their bowel function as well as on their overall quality of life (QOL) as related to their bowel function. RESULTS: Ten participants completed 25-63 sessions of EAW over a period of 12-14 weeks, one participant was lost to follow up due to early withdrawal after ten sessions. Due to the small sample size, each participant's results were presented descriptively in a case series format. At least 5/10 participants reported improvements with frequency of bowel evacuations, less time spent on bowel management per bowel day, fewer bowel accidents per month, reduced laxative and/or stool softener use, and improved overall satisfaction with their bowel program post-EAW training. Furthermore, 8/10 reported improved stool consistency and 7/10 reported improved bowel function related QOL. One participant reported worsening of bowel function post-EAW. CONCLUSION: Between 50 and 80% of the participants studied reported improvements in bowel function and/or management post-EAW training. EAW training appeared to mitigate SCI-related bowel dysfunction and the potential benefits of EAW on bowel function after SCI is worthy or further study.


Subject(s)
Defecation , Exoskeleton Device , Paraplegia/rehabilitation , Spinal Cord Injuries/rehabilitation , Walking , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Paraplegia/etiology , Patient Outcome Assessment , Pilot Projects , Prospective Studies , Spinal Cord Injuries/complications , Young Adult
7.
PLoS One ; 13(8): e0202130, 2018.
Article in English | MEDLINE | ID: mdl-30092092

ABSTRACT

BACKGROUND AND PURPOSE: Spared fibers after spinal cord injury (SCI) tend to consist predominantly of subcortical circuits that are not under volitional (cortical) control. We aim to improve function after SCI by using targeted physical exercises designed to simultaneously stimulate cortical and spared subcortical neural circuits. METHODS: Participants with chronic motor-incomplete SCI enrolled in a single-center, prospective interventional crossover study. Participants underwent 48 sessions each of weight-supported robotic-assisted treadmill training and a novel combination of balance and fine hand exercises, in randomized order, with a 6-week washout period. Change post-intervention was measured for lower extremity motor score, soleus H-reflex facilitation; seated balance function; ambulation; spasticity; and pain. RESULTS: Only 9 of 21 enrolled participants completed both interventions. Thirteen participants completed at least one intervention. Although there were no statistically significant differences, multimodal training tended to increase short-interval H-reflex facilitation, whereas treadmill training tended to improve dynamic seated balance. DISCUSSION: The low number of participants who completed both phases of the crossover intervention limited the power of this study to detect significant effects. Other potential explanations for the lack of significant differences with multimodal training could include insufficient engagement of lower extremity motor cortex using skilled upper extremity exercises; and lack of skill transfer from upright postural stability during multimodal training to seated dynamic balance during testing. To our knowledge, this is the first published study to report seated posturography outcomes after rehabilitation interventions in individuals with SCI. CONCLUSION: In participants with chronic incomplete SCI, a novel mix of multimodal exercises incorporating balance exercises with skilled upper extremity exercises showed no benefit compared to an active control program of body weight-supported treadmill training. To improve participant retention in long-term rehabilitation studies, subsequent trials would benefit from a parallel group rather than crossover study design.


Subject(s)
Exercise Therapy/methods , Postural Balance , Rehabilitation/methods , Spinal Cord Injuries/therapy , Adult , Aged , Cross-Over Studies , Electromyography , Exercise Test , Female , Gait , H-Reflex , Humans , Male , Middle Aged , Prospective Studies , Robotics , Transcranial Magnetic Stimulation , Walking , Young Adult
8.
J Vis Exp ; (112)2016 06 16.
Article in English | MEDLINE | ID: mdl-27340808

ABSTRACT

Powered exoskeletons have become available for overground ambulation in persons with paralyses due to spinal cord injury (SCI) who have intact upper extremity function and are able to maintain upright balance using forearm crutches. To ambulate in an exoskeleton, the user must acquire the ability to maintain balance while standing, sitting and appropriate weight shifting with each step. This can be a challenging task for those with deficits in sensation and proprioception in their lower extremities. This manuscript describes screening criteria and a training program developed at the James J. Peters VA Medical Center, Bronx, NY to teach users the skills needed to utilize these devices in institutional, home or community environments. Before training can begin, potential users are screened for appropriate range of motion of the hip, knee and ankle joints. Persons with SCI are at an increased risk of sustaining lower extremity fractures, even with minimal strain or trauma, therefore a bone mineral density assessment is performed to reduce the risk of fracture. Also, as part of screening, a physical examination is performed in order to identify additional health-related contraindications. Once the person has successfully passed all screening requirements, they are cleared to begin the training program. The device is properly adjusted to fit the user. A series of static and dynamic balance tasks are taught and performed by the user before learning to walk. The person is taught to ambulate in various environments ranging from indoor level surfaces to outdoors over uneven or changing surfaces. Once skilled enough to be a candidate for home use with the exoskeleton, the user is then required to designate a companion-walker who will train alongside them. Together, the pair must demonstrate the ability to perform various advanced tasks in order to be permitted to use the exoskeleton in their home/community environment.


Subject(s)
Spinal Cord Injuries , Humans , Knee Joint , Posture , Range of Motion, Articular , Walking
9.
J Electromyogr Kinesiol ; 25(3): 438-43, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25771437

ABSTRACT

We tested the acute effect of exercises targeted simultaneously at cortical and brainstem circuits on neural transmission through corticobulbar connections. Corticobulbar pathways represent a potential target for rehabilitation after spinal cord injury (SCI), which tends to spare brainstem circuits to a greater degree than cortical circuits. To explore this concept, able-bodied volunteers (n=20) underwent one session each of three exercises targeted at different nervous system components: treadmill walking (spinal locomotor circuits), isolated balance exercise (brainstem and other pathways), and multimodal balance plus skilled hand exercise (hand motor cortex and corticospinal tract). We found that short-interval soleus H-reflex facilitation increased after one session of balance and multimodal exercise by 13.2±4.0% and 8.3±4.7%, and slightly decreased by 1.9±4.4% after treadmill exercise (p=0.042 on ANOVA across exercise type). Increases in long-interval H-reflex facilitation were not significantly different between exercises. Both balance and multimodal exercise increased central motor conduction velocity by 4.3±2.6% and 4.5±2.8%, whereas velocity decreased by 4.3±2.7% after treadmill exercise (p=0.045 on ANOVA across exercise type). In conclusion, electrophysiological transmission between the motor cortex and spinal motor neurons in able-bodied subjects increased more following one session of balance exercise than treadmill exercise.


Subject(s)
Exercise Test/methods , H-Reflex/physiology , Motor Cortex/physiology , Muscle, Skeletal/physiology , Neural Conduction/physiology , Postural Balance/physiology , Adult , Female , Humans , Male , Middle Aged , Motor Neurons/physiology , Pyramidal Tracts/physiology , Walking/physiology , Young Adult
10.
J Spinal Cord Med ; 36(2): 127-33, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23809527

ABSTRACT

BACKGROUND: The ability to retain or improve seated balance function after spinal cord injury (SCI) may mean the difference between independence and requiring assistance for basic activities of daily living. Compared with assessments of standing and walking balance, seated balance assessments remain relatively underemphasized and under-utilized. OBJECTIVE: To optimize tools for assessing seated balance deficits and recovery in SCI. DESIGN: Cross-sectional observational study of different methods for assessing seated balance function. SETTING: Veterans Affairs Center of Excellence for the Medical Consequences of Spinal Cord Injury. PARTICIPANTS: Seven able-bodied volunteers, seven participants with chronic motor-complete thoracic SCI. INTERVENTIONS: A computerized pressure-plate apparatus designed for testing standing balance was adapted into a seated balance assessment system. OUTCOME MEASURES: Seated section of Berg Balance Scale; modified functional reach test; and two posturography tests: limits of stability and clinical test of sensory integration on balance. RESULTS: Seated posturography demonstrated improved correlation with neurological level of lesion compared to that of routinely applied subjective clinical tests. CONCLUSION: Seated posturography represents an appealing outcome measure that may be applied toward the measurement of functional changes in response to various rehabilitation interventions in individuals with paralysis.


Subject(s)
Diagnostic Techniques and Procedures/instrumentation , Physical Therapy Modalities/instrumentation , Postural Balance , Spinal Cord Injuries/rehabilitation , Adult , Female , Humans , Male , Middle Aged , Spinal Cord Injuries/complications , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...