Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(1): 103698, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35059608

ABSTRACT

Accurate modeling of bifacial illumination is critical to improve the prediction of the energy yield of bifacial solar systems. Monte Carlo ray tracing is the most powerful tool to accomplish this task. In this work, we accelerate Monte Carlo ray tracing of large solar systems by nearly 90%. Our model achieves root-mean-square error values of 7.9% and 37.2% for the front and rear irradiance compared against single-axis tracking field reference data, respectively. The rear irradiance modeling error decreases to 18.9% if suspected snow periods are excluded. Crucially, our full system simulations show that surrounding ground surfaces affect the rear irradiance deep into the system. Therefore, unit system simulations cannot necessarily ignore the influence of the perimeter of large installations to accurately estimate annual yield. Large-scale simulations involving high-performance supercomputing were necessary to investigate these effects accurately, calibrate our simplified models, and validate our results against experimental measurements.

2.
Opt Express ; 23(11): A437-43, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26072868

ABSTRACT

A stochastic optimisation method adapted to illumination and radiative heat transfer problems involving Monte-Carlo ray-tracing is presented. A solar receiver shape optimisation case study illustrates the advantages of the method and its potential: efficient receivers are identified using a moderate computational cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...