Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biosyst ; 13(10): 1946-1953, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28758666

ABSTRACT

Mass spectrometry imaging (MSI) of animal tissues has become an important tool for in situ molecular analyses and biomarker studies in several clinical areas, but there are few applications in parasitological studies. Leishmaniasis is a neglected tropical disease, and experimental mouse models have been essential to evaluate pathological and immunological processes and to develop diagnostic methods. Herein we have employed MALDI MSI to examine peptides and low molecular weight proteins (2 to 20 kDa) differentially expressed in the liver during visceral leishmaniasis in mice models. We analyzed liver sections of Balb/c mice infected with Leishmania infantum using the SCiLS Lab software for statistical analysis, which facilitated data interpretation and thus highlighted several key proteins and/or peptides. We proposed a decision tree classification for visceral leishmaniasis with distinct phases of the disease, which are named here as healthy, acute infection and chronic infection. Among others, the ion of m/z 4963 was the most important to identify acute infection and was tentatively identified as Thymosin ß4. This peptide was previously established as a recovery factor in the human liver and might participate in the response of mice to Leishmania infection. This preliminary investigation shows the potential of MALDI MSI to complement classical compound selective imaging techniques and to explore new features not yet recognized by these approaches.


Subject(s)
Leishmania infantum/pathogenicity , Leishmaniasis, Visceral/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Dog Diseases/immunology , Dog Diseases/metabolism , Dogs , Leishmania infantum/immunology , Leishmaniasis/immunology , Leishmaniasis/metabolism , Leishmaniasis, Visceral/immunology , Mice , Mice, Inbred BALB C , Software
2.
FEBS Open Bio ; 5: 429-36, 2015.
Article in English | MEDLINE | ID: mdl-26082885

ABSTRACT

The substrate specificity of recombinant human mitochondrial intermediate peptidase (hMIP) using a synthetic support-bound FRET peptide library is presented. The collected fluorescent beads, which contained the hydrolysed peptides generated by hMIP, were sequenced by Edman degradation. The results showed that this peptidase presents a remarkable preference for polar uncharged residues at P1 and P1' substrate positions: Ser = Gln > Thr at P1 and Ser > Thr at P1'. Non-polar residues were frequent at the substrate P3, P2, P2' and P3' positions. Analysis of the predicted MIP processing sites in imported mitochondrial matrix proteins shows these cleavages indeed occur between polar uncharged residues. Previous analysis of these processing sites indicated the importance of positions far from the MIP cleavage site, namely the presence of a hydrophobic residue (Phe or Leu) at P8 and a polar uncharged residue (Ser or Thr) at P5. To evaluate this, additional kinetic analyses were carried out, using fluorogenic substrates synthesized based on the processing sites attributed to MIP. The results described here underscore the importance of the P1 and P1' substrate positions for the hydrolytic activity of hMIP. The information presented in this work will help in the design of new substrate-based inhibitors for this peptidase.

SELECTION OF CITATIONS
SEARCH DETAIL
...