Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(7)2022 06 30.
Article in English | MEDLINE | ID: mdl-35891431

ABSTRACT

The occurrence of dengue disease has increased radically in recent decades. Previously, we constructed the pE1D2 and pcTPANS1 DNA vaccines encoding the DENV2 envelope (E) and non-structural 1 (NS1) proteins, respectively. To decrease the number of plasmids in a tetravalent candidate vaccine, we constructed a bicistronic plasmid, pNS1/E/D2, encoding these two proteins simultaneously. We evaluated the protective immunity induced in mice vaccinated with the pNS1/E/D2 candidate and compared to the responses elicited by immunization with the former vaccines isolated or in combination. We transfected BHK-21 cells with the different plasmids and detected recombinant proteins by immunofluorescence and mass spectrometry assays to confirm antigen expression. BALB/c mice were inoculated with the DNA vaccines followed by a lethal DENV2 challenge. ELISA, PRNT50, and IFN-gamma ELISPOT assays were performed for the investigation of the humoral and cellular responses. We observed the concomitant expression of NS1 and E proteins in pNS1/E/D2-transfected cells. All E-based vaccines induced anti-E and neutralizing antibodies. However, anti-NS1 antibodies were only observed after immunization with the pcTPANS1 administered alone or combined with pE1D2. In contrast, splenocytes from pNS1/E/D2- or pcTPANS1 + pE1D2-vaccinated animals responded to NS1- and E-derived synthetic peptides. All the DNA vaccines conferred protection against DENV2.


Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Vaccines, DNA , Animals , Antibodies, Viral , Dengue/prevention & control , Dengue Vaccines/genetics , Dengue Virus/genetics , Immunity , Mice , Mice, Inbred BALB C , Vaccines, DNA/genetics , Viral Nonstructural Proteins/genetics
2.
Front Immunol ; 10: 1522, 2019.
Article in English | MEDLINE | ID: mdl-31333657

ABSTRACT

The importance of the cellular immune response against DENV has been increasingly highlighted in the past few years, in particular for vaccine development. We have previously constructed two plasmids, pE1D2, and pcTPANS1, encoding the envelope (E) ectodomain (domains I, II, and III) and the non-structural 1 (NS1) protein of dengue virus serotype 2 (DENV2), respectively. In the present work, we analyzed the induction of the cellular response in mice immunized with these DNA vaccines and identified the immunogenic peptides. Vaccinated BALB/c mice became protected against a lethal challenge of DENV2. Depletion of CD4+ cells in vaccinated animals almost completely abolished protection elicited by both vaccines. In contrast, a significant number of pE1D2- and pcTPANS1-immunized mice survived virus challenge after depletion of CD8+ cells, although some animals presented morbidity. To identify immunogenic peptides recognized by T cells, we stimulated splenocytes with overlapping peptide libraries covering the E and NS1 proteins and evaluated the production of IFN-γ by ELISPOT. We detected two and three immunodominant epitopes in the E and NS1 proteins, respectively, and four additional NS1-derived peptides after virus challenge. Characterization by intracellular cytokine staining (ICS) revealed that both CD4+ and CD8+ T cells were involved in IFN-γ and TNF-α production. The IFN-γ ICS confirmed reaction of almost all E-derived peptides before challenge and identified other epitopes after infection. All NS1-derived peptides were able to elicit IFN-γ production in CD4+ cells, while only a few peptides induced expression of this cytokine in CD8+ T lymphocytes. Interestingly, we observed an increase in the frequency of either CD4+ or CD8+ T cells producing TNF-α after immunization with the pE1D2 and challenge with DENV2, while lymphocytes from pcTPANS1-vaccinated animals maintained ordinary TNF-α production after virus infection. We also assessed the recognition of E and NS1 immunogenic peptides in C57BL/6 mice due to the difference in MHC haplotype expression. Two NS1-derived epitopes featured prominently in the IFN-γ response with cells from both animal strains. Overall, our results emphasize the importance of the T cell response involved in protection against dengue induced by E and NS1 based DNA vaccines.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Epitopes, T-Lymphocyte/immunology , Vaccines, DNA/immunology , Viral Envelope Proteins/immunology , Viral Nonstructural Proteins/immunology , Animals , Dengue/genetics , Dengue/immunology , Dengue Vaccines/genetics , Dengue Virus/genetics , Epitopes, T-Lymphocyte/genetics , Mice , Mice, Inbred BALB C , Vaccines, DNA/genetics , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...