Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 54(2): 188-196, 2017. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-875128

ABSTRACT

The expression of milk proteins in vitro is essential to exploit the mammary gland cells as a biological model. Enzymatic tissue disaggregation has been widely used to establish mammary cell culture, but its effect in long-term ovine mammary cell culture is not completely elucidated. This study aimed at comparing mechanical/enzymatic and mechanical dissociation methods to establish ovine mammary cell culture. We compared cellular differentiation induced by lactating ewe serum or fetal bovine serum based on the gene expression levels of milk proteins (beta-lactoglobulin, alpha s1-casein, and betacasein). Mechanically dissociated cells were positive immunostaining for cytokeratin 8.13, such as mammary epithelial cells. These cells are responsible for milk protein expression and they are low immunostaining for vimentin, mesenchymal marker. Mechanical/enzymatic dissociation cells were positive for vimentin. The fastest cell growth (cell/hour) was observed in the mechanical dissociation group cultured with 10% fetal bovine serum medium. Mechanically and mechanically/enzymatically derived cells were able to express beta-casein and beta-lactoglobulin, but not alpha s1-casein. The relative expression of beta-lactoglobulin was not affected by the tissue dissociation method or culture media, beta-casein relative expression was down regulated in mechanically dissociated cells cultured in the presence of lactating ewe serum, (P = 0.019). Beta-casein relative expression was also down regulated in mechanically/enzymatically dissociated cells cultured with fetal bovine serum (P = 0.021). In the present conditions, we conclude that mechanical dissociation followed by culture with 10% of fetal bovine serum was the most efficient method to induce milk proteins' mRNA expression by ovine mammary epithelial cells in vitro.(AU)


A expressão in vitro de proteínas do leite é essencial para explorar as células da glândula mamária como um modelo biológico. A desagregação tecidual via enzimática é amplamente utilizada para o estabelecimento cultivo de células mamárias. No entanto, seu efeito a longo prazo no cultivo de células da glândula mamária ovina ainda não é bem elucidado. Este estudo tem como objetivo comparar dois métodos de dissociação tecidual, mecânico/enzimático e mecânico, para estabelecer cultivo celular de glândula mamária ovina. A indução da diferenciação celular, por adição de soro de ovelha lactante ou soro fetal bovino, foi avaliada pelos níveis de expressão de proteínas do leite (beta-lactoglobulina, alpha s1-caseína e beta-caseína). Células mecanicamente dissociadas foram positivamente marcadas para a presença de citoqueratina 8.13, marcador para células epiteliais mamárias. Essas células são as responsáveis pela produção das proteínas do leite e são pouco marcadas para a presença de vimentina, marcador para células de origem mesenquimal. Já as células obtidas da dissociação mecânica/ enzimática foram positivamente marcadas para presença de vimentina. A maior velocidade de crescimento (células/hora) foi observado para o grupo com dissociação mecânica cultivado em meio com 10% de soro fetal bovino. As células obtidas tanto da dissociação mecânica quanto mecânica/enzimática foram capazes de expressar beta-lactoglobulina e beta-caseína, mas não alfa s1-caseína. A expressão relativa de beta-lactoglobulina não foi afetada pelo método de dissociação ou meio de cultivo. A expressão relativa da beta-caseína foi negativamente regulada para células mecanicamente dissociadas e cultivadas na presença de soro de ovelha lactante (P = 0,019). A expressão relativa da beta-caseína também foi negativamente regulada para células dissociadas de forma mecânica/enzimática e cultivadas com soro fetal bovino (P = 0,021). Nas condições do presente estudo, concluímos que o método de dissociação mecânica seguido pelo cultivo em meio com 10% de soro fetal bovino foi o método mais eficiente para induzir a expressão mRNA de proteínas do leite por células epiteliais mamárias ovinas in vitro.(AU)


Subject(s)
Animals , Female , Caseins/analysis , Lactoglobulins/analysis , Mammary Glands, Animal/cytology , Milk Proteins/analysis , Sheep , Cell Culture Techniques/veterinary
2.
Mol Reprod Dev ; 83(4): 324-36, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26822777

ABSTRACT

Embryo morphokinetics suggests that the timing of the first embryonic cell divisions may predict the developmental potential of an embryo; however, correlations between embryonic morphokinetics and physiology are not clear. Here, we used RNA sequencing to determine the gene expression profile of in vitro-produced early- and late-dividing bovine embryos and their respective blastocysts, and compared these profiles to in vivo-produced blastocysts to identify differentially expressed genes (DEGs). Principal component analysis revealed that fast- and slow-dividing embryos possess similar transcript abundance over the first cleavages. By the blastocyst stage, however, more DEGs were observed between the fast- and slow-dividing embryo groups, whereas blastocysts from the slow-dividing group were more similar to in vivo-produced blastocysts. Gene ontology enrichment analysis showed that the slow-dividing and in vivo-produced blastocysts shared biological processes related to groups of up- or down-regulated genes when compared to the fast-dividing blastocysts. Based on these DEG results, we characterized the relationship between developmental kinetics and energy metabolism of in vitro-produced bovine embryos. Embryos from fast- and slow-dividing groups exhibited different pyruvate and lactate metabolism at 22 hr post-in vitro culture (hpc), glucose consumption at 96 hpc, and glutamate metabolism at 168 hpc. Glycogen storage was similar between cleavage-stage and morulae groups, but was higher in the blastocysts of the slow-dividing group. On the other hand, blastocysts of the fast-dividing group had a higher concentration of lipids. Taken together, these data identify transcriptomic and metabolic differences between embryos with different morphokinetics, suggesting that sorting embryos based on cleavage speed may select for different metabolic patterns. Mol. Reprod. Dev. 83: 324-336, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Blastocyst/cytology , Blastocyst/metabolism , Cattle , Cleavage Stage, Ovum , Transcriptome , Animals , Cell Division , Culture Media/metabolism , Cytokinesis , Embryonic Development , Female , Fertilization in Vitro/veterinary , Gene Expression , Pregnancy , Principal Component Analysis , RNA, Messenger , Time Factors , Tissue Culture Techniques
3.
Theriogenology ; 66(6-7): 1677-81, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16469368

ABSTRACT

The aim of the present research was to verify the influence of oviductal cell co-culture previously supplemented with steroids (estrogen, progesterone, or both) on IVM rates for oocytes from anestrous bitches that were cultured in vitro for 48, 72 and 96 h. Oocytes harvested from anestrous bitches were selected and allocated into four groups: Group 1 (co-culture in oviductal epithelial cells without hormonal supplementation-control); Group 2 (estrogen supplementation); Group 3 (progesterone supplementation); Group 4 (estrogen+progesterone supplementation). The oviductal epithelial cell culture was established 72 h prior to oocyte co-culture. After periods of 48, 72 and 96 h, the degree of oocyte nuclear maturation was assessed. Co-culture in oviductal epithelial cells with estrogen was not as beneficial for canine IVM as supplementation with progesterone and estrogen, or progesterone supplementation alone. Therefore, it was feasible to use co-culture with oviductal epithelial cells obtained from anestrous bitches for IVM (monolayer culture with oviduct cells previously supplemented with progesterone). Final stages of oocyte maturation were achieved at 72 and 96 h of culture; therefore, the duration of maturation for oocytes obtained from bitches in different stages of the estrous cycle should be taken into account.


Subject(s)
Dogs/physiology , Estradiol/pharmacology , Oocytes/physiology , Progesterone/pharmacology , Animals , Benzimidazoles/chemistry , Cell Nucleus/physiology , Coculture Techniques/veterinary , Culture Media , Epithelial Cells/cytology , Female , Fluorescent Dyes/chemistry , Microscopy, Fluorescence/veterinary , Oocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...