Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(31): 27532-27541, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35967020

ABSTRACT

Solar photovoltaic (PV) energy generation is highly dependent on weather conditions and only applicable when the sun is shining during the daytime, leading to a mismatch between demand and supply. Merging PVs with battery storage is the straightforward route to counteract the intermittent nature of solar generation. Capacity (or energy density), overall efficiency, and stability at elevated temperatures are among key battery performance metrics for an integrated PV-battery system. The performance of high-capacity silicon (Si)/graphite (Gr) anode and LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode cells at room temperature, 45, and 60 °C working temperatures for PV modules are explored. The electrochemical performance of both half and full cells are tested using a specially formulated electrolyte, 1 M LiPF6 in ethylene carbonate: diethyl carbonate, with 5 wt % fluoroethylene carbonate, 2 wt % vinylene carbonate, and 1 wt % (2-cyanoethyl)triethoxysilane. To demonstrate solar charging, perovskite solar cells (PSCs) are coupled to the developed batteries, following the evaluation of each device. An overall efficiency of 8.74% under standard PV test conditions is obtained for the PSC charged lithium-ion battery via the direct-current-direct-current converter, showing the promising applicability of silicon/graphite-based anodes in the PV-battery integrated system.

2.
Rev Sci Instrum ; 84(10): 103911, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24182133

ABSTRACT

We present the design and implementation of a scanning probe microscope, which combines electrically detected magnetic resonance (EDMR) and (photo-)conductive atomic force microscopy ((p)cAFM). The integration of a 3-loop 2-gap X-band microwave resonator into an AFM allows the use of conductive AFM tips as a movable contact for EDMR experiments. The optical readout of the AFM cantilever is based on an infrared laser to avoid disturbances of current measurements by absorption of straylight of the detection laser. Using amorphous silicon thin film samples with varying defect densities, the capability to detect a spatial EDMR contrast is demonstrated. Resonant current changes as low as 20 fA can be detected, allowing the method to realize a spin sensitivity of 8×10(6)spins/√Hz at room temperature.

3.
J Magn Reson ; 234: 1-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23820089

ABSTRACT

Pulsed multi-frequency electrically detected magnetic resonance (EDMR) at X-, Q- and W-Band (9.7, 34, and 94GHz) was applied to investigate paramagnetic centers in microcrystalline silicon thin-film solar cells under illumination. The EDMR spectra are decomposed into resonances of conduction band tail states (e states) and phosphorus donor states (P states) from the amorphous layer and localized states near the conduction band (CE states) in the microcrystalline layer. The e resonance has a symmetric profile at all three frequencies, whereas the CE resonance reveals an asymmetry especially at W-band. This is suggested to be due to a size distribution of Si crystallites in the microcrystalline material. A gain in spectral resolution for the e and CE resonances at high fields and frequencies demonstrates the advantages of high-field EDMR for investigating devices of disordered Si. The microwave frequency independence of the EDMR spectra indicates that a spin-dependent process independent of thermal spin-polarization is responsible for the EDMR signals observed at X-, Q- and W-band.

SELECTION OF CITATIONS
SEARCH DETAIL
...