Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(3)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182785

ABSTRACT

A pure ferrite and epoxy samples as well as the epoxy/ferrite composites with different 20 wt.%, 30 wt.%, 40 wt.%, and 50 wt.% weight ferrite contents have been prepared by the chemical co-precipitation method. AC-conductivity and dielectric properties such as the dielectric constant and dielectric loss of the prepared samples have been studied. The obtained results showed that the samples had a semiconductor behavior. The dielectric constant of the composites has been calculated theoretically using several models. For the composite sample that contains 20 wt.% of ferrites, these models give satisfactory compliance, while for the composite samples with a higher percentage of nanofillers, more than 30 wt.% theoretical results do not coincide with experimental data. The investigated polymer has very low conductivity, so this type of polymer can be useful for high-frequency applications, which can reduce the losses caused by eddy current. Thus, the prepared samples are promising materials for practical use as elements of microwave devices.

2.
Nanomaterials (Basel) ; 9(12)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810302

ABSTRACT

The paper describes preparation features of functional composites based on ferrites, such as "Ba(Fe1-xGax)12O19/epoxy," and the results of studying their systems; namely, the correlation between structure, magnetic properties and electromagnetic absorption characteristics. We demonstrated the strong mutual influence of the chemical compositions of magnetic fillers (Ba(Fe1-xGax)12O19 0.01 < x < 0.1 solid solutions), and the main magnetic (coercivity, magnetization, anisotropy field and the first anisotropy constant) and microwave (resonant frequency and amplitude) characteristics of functional composites with 30 wt.% of hexaferrite. The paper presents a correlation between the chemical compositions of composites and amplitude-frequency characteristics. Increase of Ga-content from x = 0 to 0.1 in Ba(Fe1-xGax)12O19/epoxy composites leads to increase of the resonant frequency from 51 to 54 GHz and absorption amplitude from -1.5 to -10.5 dB/mm. The ability to control the electromagnetic properties in these types of composites opens great prospects for their practical applications due to high absorption efficiency, and lower cost in comparison with pure ceramics oxides.

SELECTION OF CITATIONS
SEARCH DETAIL
...