Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 4: e2417, 2016.
Article in English | MEDLINE | ID: mdl-27688960

ABSTRACT

We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

2.
PLoS One ; 9(4): e89689, 2014.
Article in English | MEDLINE | ID: mdl-24699171

ABSTRACT

The architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the expressions of the involved genes. Our approach starts from employing biological expert knowledge to select the most probable gene candidates behind branching behavior. To find how these genes interact, we develop a stepwise procedure for computational inference of the network structure. Our data consists of expression levels from primary shoot meristems, measured at different developmental stages on three different genotypes of tomato. With the network inferred by our algorithm, we can explain the dynamics corresponding to all three genotypes simultaneously, despite their apparent dissimilarities. We also correctly predict the chronological order of expression peaks for the main hubs in the network. Based on the inferred network, using optimal experimental design criteria, we are able to suggest an informative set of experiments for further investigation of the mechanisms underlying branching behavior.


Subject(s)
Flowers/anatomy & histology , Flowers/growth & development , Gene Regulatory Networks , Genes, Plant , Inflorescence/genetics , Solanum lycopersicum/genetics , Gene Expression Regulation, Plant , Genotype , Solanum lycopersicum/growth & development , Phenotype
3.
Microarrays (Basel) ; 3(3): 203-11, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-27600344

ABSTRACT

Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data.

4.
PLoS One ; 8(7): e68960, 2013.
Article in English | MEDLINE | ID: mdl-23922672

ABSTRACT

Flavonoids are secondary metabolites present in all terrestrial plants. The flavonoid pathway has been extensively studied, and many of the involved genes and metabolites have been described in the literature. Despite this extensive knowledge, the functioning of the pathway in vivo is still poorly understood. Here, we study the flavonoid pathway using both experiments and mathematical models. We measured flavonoid metabolite dynamics in two tissues, hypocotyls and cotyledons, during tomato seedling development. Interestingly, the same backbone of interactions leads to very different accumulation patterns in the different tissues. Initially, we developed a mathematical model with constant enzyme concentrations that described the metabolic networks separately in both tissues. This model was unable to fit the measured flavonoid dynamics in the hypocotyls, even if we allowed unrealistic parameter values. This suggested us to investigate the effect of transcript abundance on flavonoid accumulation. We found that the expression of candidate flavonoid genes varies considerably with time. Variation in transcript abundance results in enzymatic variation, which could have a large effect on metabolite accumulation. Candidate transcript abundance was included in the mathematical model as representative for enzyme concentration. We fitted the resulting model to the flavonoid dynamics in the cotyledons, and tested it by applying it to the data from hypocotyls. When transcript abundance is included, we are indeed able to explain flavonoid dynamics in both tissues. Importantly, this is possible under the biologically relevant restriction that the enzymatic properties estimated by the model are conserved between the tissues.


Subject(s)
Biosynthetic Pathways/genetics , Flavonoids/biosynthesis , Gene Expression Profiling , Metabolome/genetics , Models, Biological , Seedlings/genetics , Solanum lycopersicum/genetics , Flavonoids/chemistry , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , Metabolic Flux Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seedlings/metabolism
5.
Inf Process Med Imaging ; 20: 642-9, 2007.
Article in English | MEDLINE | ID: mdl-17633736

ABSTRACT

In this paper we discuss new measures for connectivity analysis of brain white matter, using MR diffusion tensor imaging. Our approach is based on Riemannian geometry, the viability of which has been demonstrated by various researchers in foregoing work. In the Riemannian framework bundles of axons are represented by geodesics on the manifold. Here we do not discuss methods to compute these geodesics, nor do we rely on the availability of geodesics. Instead we propose local measures which are directly computable from the local DTI data, and which enable us to preselect viable or exclude uninteresting seed points for the potentially time consuming extraction of geodesics. If geodesics are available, our measures can be readily applied to these as well. We consider two types of geodesic measures. One pertains to the connectivity saliency of a geodesic, the second to its stability with respect to local spatial perturbations. For the first type of measure we consider both differential as well as integral measures for characterizing a geodesic's saliency either locally or globally. (In the latter case one needs to be in possession of the geodesic curve, in the former case a single tangent vector suffices.) The second type of measure is intrinsically local, and turns out to be related to a well known tensor in Riemannian geometry.


Subject(s)
Artificial Intelligence , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Nerve Fibers, Myelinated/ultrastructure , Neural Pathways/cytology , Pattern Recognition, Automated/methods , Algorithms , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...