Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1886): 20220349, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37545308

ABSTRACT

Efficient decision-making requires accounting for sources of uncertainty (noise, or variability). Many studies have shown how the nervous system is able to account for perceptual uncertainty (noise, variability) that arises from limitations in its own abilities to encode perceptual stimuli. However, many other sources of uncertainty exist, reflecting for example variability in the behaviour of other agents or physical processes. Here we review previous studies on decision making under uncertainty as a function of the different types of uncertainty that the nervous system encounters, showing that noise that is intrinsic to the perceptual system can often be accounted for near-optimally (i.e. not statistically different from optimally), whereas accounting for other types of uncertainty can be much more challenging. As an example, we present a study in which participants made decisions about multisensory stimuli with both intrinsic (perceptual) and extrinsic (environmental) uncertainty and show that the nervous system accounts for these differently when making decisions: they account for internal uncertainty but under-account for external. Human perceptual systems may be well equipped to account for intrinsic (perceptual) uncertainty because, in principle, they have access to this. Accounting for external uncertainty is more challenging because this uncertainty must be learned. This article is part of the theme issue 'Decision and control processes in multisensory perception'.


Subject(s)
Decision Making , Humans , Uncertainty , Decision Making/physiology
2.
J Opt Soc Am A Opt Image Sci Vis ; 40(3): A230-A240, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37133049

ABSTRACT

Color constancy is the perceptual stability of surface colors under temporal changes in the illumination spectrum. The illumination discrimination task (IDT) reveals worse discrimination for "bluer" illumination changes in normal-trichromatic observers (changes towards cooler color temperatures on the daylight chromaticity locus), indicating greater stability of scene colors or better color constancy, compared with illumination changes in other chromatic directions. Here, we compare the performance of individuals with X-linked color-vision deficiencies (CVDs) to normal trichromats on the IDT performed in an immersive setting with a real scene illuminated by spectrally tunable LED lamps. We determine discrimination thresholds for illumination changes relative to a reference illumination (D65) in four chromatic directions, roughly parallel and orthogonal to the daylight locus. We find, using both a standard CIELUV metric and a cone-contrast metric tailored to distinct CVD types, that discrimination thresholds for daylight changes do not differ between normal trichromats and CVD types, including dichromats and anomalous trichromats, but thresholds for atypical illuminations do differ. This result extends a previous report of illumination discrimination ability in dichromats for simulated daylight changes in images. In addition, using the cone-contrast metric to compare thresholds for bluer and yellower daylight changes with those for unnatural redder and greener changes, we suggest that reduced sensitivity to daylight changes is weakly preserved in X-linked CVDs.

3.
Dev Sci ; 26(2): e13306, 2023 03.
Article in English | MEDLINE | ID: mdl-35943256

ABSTRACT

When the illumination falling on a surface change, so does the reflected light. Despite this, adult observers are good at perceiving surfaces as relatively unchanging-an ability termed colour constancy. Very few studies have investigated colour constancy in infants, and even fewer in children. Here we asked whether there is a difference in colour constancy between children and adults; what the developmental trajectory is between six and 11 years; and whether the pattern of constancy across illuminations and reflectances differs between adults and children. To this end, we developed a novel, child-friendly computer-based object selection task. In this, observers saw a dragon's favourite sweet under a neutral illumination and picked the matching sweet from an array of eight seen under a different illumination (blue, yellow, red, or green). This set contained a reflectance match (colour constant; perfect performance) and a tristimulus match (colour inconstant). We ran two experiments, with two-dimensional scenes in one and three-dimensional renderings in the other. Twenty-six adults and 33 children took part in the first experiment; 26 adults and 40 children took part in the second. Children performed better than adults on this task, and their performance decreased with age in both experiments. We found differences across illuminations and sweets, but a similar pattern across both age groups. This unexpected finding might reflect a real decrease in colour constancy from childhood to adulthood, explained by developmental changes in the perceptual and cognitive mechanisms underpinning colour constancy, or differences in task strategies between children and adults. HIGHLIGHTS: Six- to 11-year-old children demonstrated better performance than adults on a colour constancy object selection task. Performance decreased with age over childhood. These findings may indicate development of cognitive strategies used to overcome automatic colour constancy mechanisms.


Subject(s)
Color Perception , Taste , Adult , Humans , Child , Adolescent , Young Adult , Color , Photic Stimulation/methods
4.
J Vis ; 22(13): 8, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36580296

ABSTRACT

Reliability-weighted averaging of multiple perceptual estimates (or cues) can improve precision. Research suggests that newly learned statistical associations can be rapidly integrated in this way for efficient decision-making. Yet, it remains unclear if the integration of newly learned statistics into decision-making can directly influence perception, rather than taking place only at the decision stage. In two experiments, we implicitly taught observers novel associations between shape and color. Observers made color matches by adjusting the color of an oval to match a simultaneously presented reference. As the color of the oval changed across trials, so did its shape according to a novel mapping of axis ratio to color. Observers showed signatures of reliability-weighted averaging-a precision improvement in both experiments and reweighting of the newly learned shape cue with changes in uncertainty in Experiment 2. To ask whether this was accompanied by perceptual effects, Experiment 1 tested for forced fusion by measuring color discrimination thresholds with and without incongruent novel cues. Experiment 2 tested for a memory color effect, observers adjusting the color of ovals with different axis ratios until they appeared gray. There was no evidence for forced fusion and the opposite of a memory color effect. Overall, our results suggest that the ability to quickly learn novel cues and integrate them with familiar cues is not immediately (within the short duration of our experiments and in the domain of color and shape) accompanied by common perceptual effects.


Subject(s)
Color Perception , Learning , Humans , Reproducibility of Results , Cues , Uncertainty
5.
Opt Express ; 30(18): 31872-31888, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242261

ABSTRACT

We investigated the claims of EnChroma that their notch filters aid chromatic discrimination in color-vision deficiencies (CVD). Few research studies have addressed these claims and reports are still inconclusive, mainly due to small sample sizes. We here add to previous research finding little evidence to support the benefits of EnChroma lenses. Comparing the performance of 86 well-categorized CVD observers and 24 controls on two clinical tests we report no overall improvement when EnChroma lenses were worn. In line with previous studies, our results imply an improvement in discrimination for some colors while worsening discrimination for others. A model was constructed computing discrimination changes for different groups of ideal observers corroborating our behavioral outcomes. Taken together, our results do not support the use of EnChroma notch filters for the improvement of color discrimination in CVD.


Subject(s)
Cardiovascular Diseases , Color Vision Defects , Lens, Crystalline , Color , Color Perception , Color Vision Defects/diagnosis , Eyeglasses , Humans
6.
J Exp Psychol Hum Percept Perform ; 48(6): 639-652, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35389708

ABSTRACT

Mature perceptual systems can learn new arbitrary sensory signals (novel cues) to properties of the environment, but little is known about the extent to which novel cues are integrated into normal perception. In normal perception, multiple uncertain familiar cues are combined, often near-optimally (reliability-weighted averaging), to increase perceptual precision. We trained observers to use abstract novel cues to estimate horizontal locations of hidden objects on a monitor. In experiment 1, 4 groups of observers each learned to use a different novel cue. All groups benefited from a suboptimal but significant gain in precision using novel and familiar cues together after short-term training (3 ∼1.5 hr sessions), extending previous reports of novel-familiar cue combination. In experiment 2, we tested whether 2 novel cues may also be combined with each other. One pair of novel cues could be combined to improve precision but the other could not, at least not after 3 sessions of repeated training. Overall, our results provide extensive evidence that novel cues can be learned and combined with familiar cues to enhance perception, but mixed evidence for whether perceptual and decision-making systems can extend this ability to the combination of multiple novel cues with only short-term training. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Subject(s)
Cues , Learning , Humans , Reproducibility of Results
7.
Behav Res Methods ; 54(1): 508-521, 2022 02.
Article in English | MEDLINE | ID: mdl-34258708

ABSTRACT

Observers in perceptual tasks are often reported to combine multiple sensory cues in a weighted average that improves precision-in some studies, approaching statistically optimal (Bayesian) weighting, but in others departing from optimality, or not benefitting from combined cues at all. To correctly conclude which combination rules observers use, it is crucial to have accurate measures of their sensory precision and cue weighting. Here, we present a new approach for accurately recovering these parameters in perceptual tasks with continuous responses. Continuous responses have many advantages, but are susceptible to a central tendency bias, where responses are biased towards the central stimulus value. We show that such biases lead to inaccuracies in estimating both precision gains and cue weightings, two key measures used to assess sensory cue combination. We introduce a method that estimates sensory precision by regressing continuous responses on targets and dividing the variance of the residuals by the squared slope of the regression line, "correcting-out" the error introduced by the central bias and increasing statistical power. We also suggest a complementary analysis that recovers the sensory cue weights. Using both simulations and empirical data, we show that the proposed methods can accurately estimate sensory precision and cue weightings in the presence of central tendency biases. We conclude that central tendency biases should be (and can easily be) accounted for to consistently capture Bayesian cue combination in continuous response data.


Subject(s)
Cues , Bayes Theorem , Bias , Humans
8.
Perception ; 49(11): 1235-1251, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33183137

ABSTRACT

The colors that people see depend not only on the surface properties of objects but also on how these properties interact with light as well as on how light reflected from objects interacts with an individual's visual system. Because individual visual systems vary, the same visual stimulus may elicit different perceptions from different individuals. #thedress phenomenon drove home this point: different individuals viewed the same image and reported it to be widely different colors: blue and black versus white and gold. This phenomenon inspired a collection of demonstrations presented at the Vision Sciences Society 2015 Meeting which showed how spatial and temporal manipulations of light spectra affect people's perceptions of material colors and illustrated the variability in individual color perception. The demonstrations also explored the effects of temporal alterations in metameric lights, including Maxwell's Spot, an entoptic phenomenon. Crucially, the demonstrations established that #thedress phenomenon occurs not only for images of the dress but also for the real dress under real light sources of different spectral composition and spatial configurations.


Subject(s)
Color Perception , Vision, Entoptic , Color , Humans , Light , Lighting
9.
J Vis ; 20(12): 4, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33170203

ABSTRACT

Previous studies suggest that to achieve color constancy, the human visual system makes use of multiple cues, including a priori assumptions about the illumination ("daylight priors"). Specular highlights have been proposed to aid constancy, but the evidence for their usefulness is mixed. Here, we used a novel cue-combination approach to test whether the presence of specular highlights or the validity of a daylight prior improves illumination chromaticity estimates, inferred from achromatic settings, to determine whether and under which conditions either cue contributes to color constancy. Observers made achromatic settings within three-dimensional rendered scenes containing matte or glossy shapes, illuminated by either daylight or nondaylight illuminations. We assessed both the variability of these settings and their accuracy, in terms of the standard color constancy index (CCI). When a spectrally uniform background was present, neither CCIs nor variability improved with specular highlights or daylight illuminants (Experiment 1). When a Mondrian background was introduced, CCIs decreased overall but were higher for scenes containing glossy, as opposed to matte, shapes (Experiments 2 and 3). There was no overall reduction in variability of settings and no benefit for scenes illuminated by daylights. Taken together, these results suggest that the human visual system indeed uses specular highlights to improve color constancy but only when other cues, such as from the local surround, are weakened.


Subject(s)
Color Perception/physiology , Lighting , Pattern Recognition, Visual/physiology , Adult , Cues , Female , Humans , Male , Young Adult
10.
J Vis ; 20(6): 17, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32579672

ABSTRACT

Prior knowledge can help observers in various situations. Adults can simultaneously learn two location priors and integrate these with sensory information to locate hidden objects. Importantly, observers weight prior and sensory (likelihood) information differently depending on their respective reliabilities, in line with principles of Bayesian inference. Yet, there is limited evidence that observers actually perform Bayesian inference, rather than a heuristic, such as forming a look-up table. To distinguish these possibilities, we ask whether previously learned priors will be immediately integrated with a new, untrained likelihood. If observers use Bayesian principles, they should immediately put less weight on the new, less reliable, likelihood ("Bayesian transfer"). In an initial experiment, observers estimated the position of a hidden target, drawn from one of two distinct distributions, using sensory and prior information. The sensory cue consisted of dots drawn from a Gaussian distribution centered on the true location with either low, medium, or high variance; the latter introduced after block three of five to test for evidence of Bayesian transfer. Observers did not weight the cue (relative to the prior) significantly less in the high compared to medium variance condition, counter to Bayesian predictions. However, when explicitly informed of the different prior variabilities, observers placed less weight on the new high variance likelihood ("Bayesian transfer"), yet, substantially diverged from ideal. Much of this divergence can be captured by a model that weights sensory information, according only to internal noise in using the cue. These results emphasize the limits of Bayesian models in complex tasks.


Subject(s)
Bayes Theorem , Form Perception/physiology , Space Perception/physiology , Adolescent , Adult , Female , Heuristics , Humans , Learning , Male , Normal Distribution , Probability , Young Adult
11.
J Vis ; 19(3): 15, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30924843

ABSTRACT

We measured discrimination thresholds for illumination changes along different chromatic directions starting from chromatically biased reference illuminations. Participants viewed a Mondrian-papered scene illuminated by LED lamps. The scene was first illuminated by a reference illumination, followed by two comparisons. One comparison matched the reference (the target); the other (the test) varied from the reference, nominally either bluer, yellower, redder, or greener. The participant's task was to correctly select the target. A staircase procedure found thresholds for discrimination of an illumination change along each axis of chromatic change. Nine participants completed the task for five different reference illumination conditions (neutral, blue, yellow, red, and green). We find that relative discrimination thresholds for different chromatic directions of illumination change vary with the reference illumination. For the neutral reference, there is a trend for thresholds to be highest in the bluer illumination-change direction, replicating our previous reports of a "blue bias" for neutral reference illuminations. For the four chromatic references (blue, yellow, red, and green), the change in illumination toward the neutral reference is less well discriminated than changes in the other directions: a "neutral bias." The results have implications for color constancy: In considering the stability of surface appearance under changes in illumination, both the starting chromaticity of the illumination and direction of change must be considered, as well as the chromatic characteristics of the surface reflectance ensemble. They also suggest it will be worthwhile to explore whether and how the human visual system has internalized the statistics of natural illumination changes.


Subject(s)
Color Perception/physiology , Discrimination, Psychological/physiology , Lighting , Adult , Biometry , Color , Contrast Sensitivity/physiology , Female , Humans , Light , Male , Young Adult
12.
J Vis ; 18(5): 11, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29904786

ABSTRACT

Previous studies have shown that humans can discriminate spectral changes in illumination and that this sensitivity depends both on the chromatic direction of the illumination change and on the ensemble of surfaces in the scene. These studies, however, always used stimulus scenes with a fixed surface-reflectance layout. Here we compared illumination discrimination for scenes in which the surface reflectance layout remains fixed (fixed-surfaces condition) to those in which surface reflectances were shuffled randomly across scenes, but with the mean scene reflectance held approximately constant (shuffled-surfaces condition). Illumination discrimination thresholds in the fixed-surfaces condition were commensurate with previous reports. Thresholds in the shuffled-surfaces condition, however, were considerably elevated. Nonetheless, performance in the shuffled-surfaces condition exceeded that attainable through random guessing. Analysis of eye fixations revealed that in the fixed-surfaces condition, low illumination discrimination thresholds (across observers) were predicted by low overall fixation spread and high consistency of fixation location and fixated surface reflectances across trial intervals. Performance in the shuffled-surfaces condition was not systematically related to any of the eye-fixation characteristics we examined for that condition, but was correlated with performance in the fixed-surfaces condition.


Subject(s)
Light , Lighting , Sensory Thresholds/physiology , Visual Perception/physiology , Adult , Female , Humans , Male , Surface Properties , Young Adult
13.
J Vis ; 17(9): 4, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28793353

ABSTRACT

The disagreement between people who named #theDress (the Internet phenomenon of 2015) "blue and black" versus "white and gold" is thought to be caused by individual differences in color constancy. It is hypothesized that observers infer different incident illuminations, relying on illumination "priors" to overcome the ambiguity of the image. Different experiences may drive the formation of different illumination priors, and these may be indicated by differences in chronotype. We assess this hypothesis, asking whether matches to perceived illumination in the image and/or perceived dress colors relate to scores on the morningness-eveningness questionnaire (a measure of chronotype). We find moderate correlations between chronotype and illumination matches (morning types giving bluer illumination matches than evening types) and chronotype and dress body matches, but these are significant only at the 10% level. Further, although inferred illumination chromaticity in the image explains variation in the color matches to the dress (confirming the color constancy hypothesis), color constancy thresholds obtained using an established illumination discrimination task are not related to dress color perception. We also find achromatic settings depend on luminance, suggesting that subjective white point differences may explain the variation in dress color perception only if settings are made at individually tailored luminance levels. The results of such achromatic settings are inconsistent with their assumed correspondence to perceived illumination. Finally, our results suggest that perception and naming are disconnected, with observers reporting different color names for the dress photograph and their isolated color matches, the latter best capturing the variation in the matches.


Subject(s)
Color Perception/physiology , Form Perception/physiology , Individuality , Lighting , Pattern Recognition, Visual/physiology , Adolescent , Adult , Female , Humans , Male , Middle Aged , Photic Stimulation/methods , Young Adult
14.
J Vis ; 16(11): 2, 2016 09 01.
Article in English | MEDLINE | ID: mdl-28558392

ABSTRACT

Characterizing humans' ability to discriminate changes in illumination provides information about the visual system's representation of the distal stimulus. We have previously shown that humans are able to discriminate illumination changes and that sensitivity to such changes depends on their chromatic direction. Probing illumination discrimination further would be facilitated by the use of computer-graphics simulations, which would, in practice, enable a wider range of stimulus manipulations. There is no a priori guarantee, however, that results obtained with simulated scenes generalize to real illuminated scenes. To investigate this question, we measured illumination discrimination in real and simulated scenes that were well-matched in mean chromaticity and scene geometry. Illumination discrimination thresholds were essentially identical for the two stimulus types. As in our previous work, these thresholds varied with illumination change direction. We exploited the flexibility offered by the use of graphics simulations to investigate whether the differences across direction are preserved when the surfaces in the scene are varied. We show that varying the scene's surface ensemble in a manner that also changes mean scene chromaticity modulates the relative sensitivity to illumination changes along different chromatic directions. Thus, any characterization of sensitivity to changes in illumination must be defined relative to the set of surfaces in the scene.


Subject(s)
Color Perception/physiology , Contrast Sensitivity/physiology , Lighting , Adult , Computer Graphics , Computer Simulation , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...