Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(9): e29721, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694125

ABSTRACT

The Karo sub-ethnic is one of five Batak sub-ethnicities in the Karo Regency, North Sumatra Province, Indonesia. They are famous for their local knowledge about the traditional use of medicinal plants to treat various diseases. The "Kem-kem" traditional medicine is one of the traditional healing practices that involve using plants passed down through generations from their ancestors. One of the plant genus group in the Rutaceae family utilized in the traditional "Kem-kem" healing practice is a citrus known as "Rimo". This study aims to document the local knowledge about the diversity of Citrus spp. as Kem-kem's herbal medicinal plant. This study was conducted from April to July 2023 in the Kabanjahe and Berastagi districts, Karo Regency, North Sumatra. Data was collected using interviews with traditional healers, herbal medicine vendors, and direct observations at traditional markets, involving a total of 8 Citrus spp. The Karo uses "Rimo" with different local names as sources of traditional medicinal ingredients in practicing "Kem-kem". There are 15 local names comprising eight species of Citrus. Four are hybrids, i.e., Citrus x aurantiifolia (Christm.) Swingle, Citrus × aurantium L, Citrus × junos Siebold ex Yu.Tanaka, and Citrus × taitensis Risso. Two of the remaining species are recognized in infraspecific rank, one variety (Citrus medica var. sarcodactylis (Hoola van Nooten) Swingle) and one form (Citrus × aurantium f. deliciosa (Ten.) M.Hiroe). They were used as material sources for Kem-kem traditional medicine to treat at least nine health problems. There are two species with six local names included in the Least Concern (LC) category, namely C. medica (Rimo Gawang, Rimo Hantuantu, Rimo Kayu), C. medica var. sarcodactylis (Rimo Kuku Harimau), and C. medica (Rimo Telur Buaya), C. maxima (Burm.) Merr. (Rimo Malem). Nine local names are included in the Not Evaluated (NE) category, namely C. × junos (Rimo Kejaren), C. × taitensis (Rimo Jungga), C. × aurantium f. deliciosa (Rimo Keling), C. × aurantium (Rimo Kersik), Citrus hystrix DC. (Rimo Mukur), C. × taitensis (Rimo Puraga), C. × aurantium (Rimo Kalele), Citrus swinglei Burkill ex Harms (Rimo Pagar), and C. x aurantiifolia (Rimo Bunga). Rimo Kejaren (C. × junos) is a species that has the most benefits.

2.
PLoS One ; 18(8): e0289722, 2023.
Article in English | MEDLINE | ID: mdl-37549156

ABSTRACT

It has been 23 years since the conservation status of highland tropical pitcher plant Nepenthes talangensis was assessed in 2000. A number of existing threats (anthropogenic and environmental) may be increasing the risk of extinction for the species. A better understanding of the ecology and conservation needs of the species is required to manage the wild populations. Specifically, better information related to population distributions, ecological requirements, priority conservation areas, the impact of future climate on suitable habitat, and current population structure is needed to properly assess extinction risks. A better understanding of the requirements of the species in its natural habitat would benefit for successfully securing the species at Botanic Gardens. We have identified 14 new occurrence records of N. talangensis in Mount Talang. Study on the ecological requirement using Random Forest (RF) and Artificial Neural Network (ANN) suggested that elevation, canopy cover, soil pH, and slope are four important variables. The population of N. talangensis was dominated by juvenile and mature (sterile) individuals, we found only a few mature males (7 individuals) and females (4 individuals) in the sampled areas. Our modelling of current conditions predicted that there were 1,076 ha of suitable habitat to very highly suitable habitat in Mount Talang, which is 14.7% of the total area. Those predicted habitats ranged in elevation from 1,740-2,558 m. Suitable habitat in 2100 was predicted to decrease in extent and be at higher elevation in the less extreme climate change scenario (SSP 1-2.6) and extreme climate change scenario (SSP 5-8.5). We projected larger habitat loss in the SSP 5-8.5 compared to the SSP 1-2.6 climate change scenario.. We proposed the category CR B1ab(iii,v), C2a(ii) as the new conservation status of N. talangensis. The status is a higher category of threat compared to the current status of the species (EN C2b, ver 2.3). Nepenthes talangensis seedlings and cuttings established in a Botanic Garden have relatively high survival rate at about 83.4%. Sixty percent of the seeds germinated in growth media successfully grew to become seedlings.


Subject(s)
Climate Change , Ecosystem , Humans , Seedlings , Seeds
3.
BMC Evol Biol ; 19(1): 236, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31888450

ABSTRACT

BACKGROUND: Orange jasmine has a complex nomenclatural history and is now known as Murraya paniculata (L.) Jack. Our interest in this common ornamental stemmed from the need to resolve its identity and the identities of closely related taxa as hosts of the pathogen 'Candidatus Liberibacter asiaticus' and its vector Diaphorina citri. Understanding these microbe-vector-plant relationships has been hampered by taxonomic confusion surrounding Murraya at both the generic and specific levels. RESULTS: To resolve the taxonomic uncertainty, six regions of the maternally-inherited chloroplastal genome and part of the nuclear-encoded ITS region were amplified from 85 accessions of Murraya and Merrillia using the polymerase chain reaction (PCR). Clustering used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI). Chronograms were produced for molecular dating, and to test the monophyly of Murraya rigorously, using selected accessions of Murraya and 26 accessions of the Rutaceae and Simarubaceae. Sequence data from the ITS and chloroplastal regions suggest that Murraya paniculata (sensu (Swingle WT and Reece CR, The Citrus Industry, p. 190-430, 1967)) can be separated into four distinct but morphologically somewhat cryptic taxa: Murraya paniculata (sensu (Mabberley DJ, Taxon 65:366-371, 2016)), M. elongata, M. sumatrana and M. lucida. In addition, Murraya omphalocarpa was identified as a putative hybrid of M. paniculata and M. lucida with two geographically isolated nothovarieties representing reciprocal crosses. Murraya is monophyletic, and molecular dating suggests that it diverged from Merrillia during the Miocene (23-5 Ma) with this Murraya group speciating and dispersing during the Middle Miocene onwards. CONCLUSIONS: The accessions from Asia and Australasia used in this study grouped into biogeographical regions that match herbarium specimen records for the taxa that suggest natural allopatric distributions with limited overlap and hybridity. Murraya paniculata has been distributed around the world as an ornamental plant. The division of the Murraya paniculata complex into four species with a rare hybrid also confirms morphological studies.


Subject(s)
Murraya/classification , Murraya/genetics , Animals , Asia , Australasia , Bayes Theorem , Genes, Chloroplast , Hemiptera/classification , Murraya/microbiology , Phylogeny , Polymerase Chain Reaction , Rhizobiaceae/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...