Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 360: 142437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797208

ABSTRACT

The construction and modification of a Graphene Oxide (GO) membrane, incorporating polyvinyl alcohol (PVA) cross-linked with maleic acid (MA) and supported by a nylon membrane, have been successfully completed. Systematic variations in PVA and MA concentrations were conducted to achieve membranes with favorable characteristics, stability, and excellent desalination performance. Optimization studies utilizing the Central Composite Design (CCD) revealed that the most optimal desalination results were obtained with 10 mL of PVA (0.1 mg mL-1) and 0.9 M of MA (GO-MA0.9-PVA10/Nylon membrane). Experimental findings demonstrated that the inclusion of PVA and MA resulted in an increased interlayer distance of GO and enhanced membrane stability. The addition of PVA increases GO membrane hydrophilicity, while the addition of MA reduces membrane hydrophilicity. The GO-MA0.9-PVA10/Nylon membrane exhibited the highest desalination performance, boasting a rejection value exceeding >99.9% and a permeance of 18.76 kg m-2.h-1 under 1% NaCl feed at a temperature of 50 °C. This membrane demonstrated consistent desalination performance stability over an extended period of up to 70 h. Moreover, it exhibited durability through 8 cycles of 24-h usage with washing treatment. In conclusion, the GO-MA0.9-PVA10/Nylon membrane is strongly recommended for practical applications, outperforming other membrane options based on the comprehensive evaluation of its stability and desalination efficiency.


Subject(s)
Graphite , Membranes, Artificial , Polyvinyl Alcohol , Sodium Chloride , Water Purification , Graphite/chemistry , Polyvinyl Alcohol/chemistry , Water Purification/methods , Sodium Chloride/chemistry , Filtration/methods , Maleates/chemistry , Salinity , Hydrophobic and Hydrophilic Interactions , Nylons/chemistry
2.
Article in English | MEDLINE | ID: mdl-29562210

ABSTRACT

This work investigated the synthesis of dimethoxydimethylsilane:tetraethoxysilane (DMDMS:TEOS) silica thin films as well as the effect of DMDMS:TEOS molar ratios and calcination temperature on hydrophobic properties of silica thin films and its correlation with the FTIR spectra behaviour. The silica thin films were synthesized by sol-gel method using combination of DMDMS and TEOS as silica precursors, ethanol as solvent and ammonia as catalyst, with DMDMS and TEOS molar ratio of 10:90, 25:75, 50:50, 75:25 and 90:10. The results showed that DMDMS:TEOS molar ratio had significant impact on the hydrophobic properties of silica thin films coated on a glass surface. Furthermore, the correlation between water contact angle (WCA) and DMDMS:TEOS molar ratio was found to be in a parabolic shape. Concurrently, the maximum apex of the parabola obtained was observed on the DMDMS:TEOS molar ratio of 50:50 for all calcination temperature. It was clearly observed that the silica xerogel exhibiting notable change in relative peak intensities showed FTIR peak splitting of υasymmetric Si-O-Si. To uncover what happened at the FTIR peak, the deconvolution was conducted in Gaussian approach. It was established that the changes in the Gaussian peak component were related to DMDMS:TEOS molar ratios and the calcination temperature that allowed us to tailor the DMDMS:TEOS silica polymer structure model based on the peak intensity ratios. With the increase of DMDMS:TEOS molar ratio, the ratio of (cyclic Si-O-Si)/(linear Si-O-Si) decreased, whilst the ratio of (C-H)/(linear Si-O-Si) increased. Both ratios intersected at DMDMS:TEOS molar ratio of 50:50 with contribution factor ratio of 1:16 and 1:50 for silica xerogel calcined at 300°C and 500°C respectively. The importance of this research is the DMDMS:TEOS molar ratio plays an important role in determining the hydrophobic properties of thin films.

SELECTION OF CITATIONS
SEARCH DETAIL
...