Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 22(1): e3002486, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236896

ABSTRACT

Acute gastrointestinal infection with intracellular pathogens like Salmonella Typhimurium triggers the release of the proinflammatory cytokine interleukin 1ß (IL-1ß). However, the role of IL-1ß in intestinal defense against Salmonella remains unclear. Here, we show that IL-1ß production is detrimental during Salmonella infection. Mice lacking IL-1ß (IL-1ß -/-) failed to recruit neutrophils to the gut during infection, which reduced tissue damage and prevented depletion of short-chain fatty acid (SCFA)-producing commensals. Changes in epithelial cell metabolism that typically support pathogen expansion, such as switching energy production from fatty acid oxidation to fermentation, were absent in infected IL-1ß -/- mice which inhibited Salmonella expansion. Additionally, we found that IL-1ß induces expression of complement anaphylatoxins and suppresses the complement-inactivator carboxypeptidase N (CPN1). Disrupting this process via IL-1ß loss prevented mortality in Salmonella-infected IL-1ß -/- mice. Finally, we found that IL-1ß expression correlates with expression of the complement receptor in patients suffering from sepsis, but not uninfected patients and healthy individuals. Thus, Salmonella exploits IL-1ß signaling to outcompete commensal microbes and establish gut colonization. Moreover, our findings identify the intersection of IL-1ß signaling and the complement system as key host factors involved in controlling mortality during invasive Salmonellosis.


Subject(s)
Interleukin-1beta , Salmonella Infections , Animals , Humans , Mice , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Neutrophils/metabolism , Salmonella Infections/metabolism , Salmonella typhimurium/metabolism , Virulence
2.
Cell Host Microbe ; 31(3): 433-446.e4, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36738733

ABSTRACT

Colonic goblet cells are specialized epithelial cells that secrete mucus to physically separate the host and its microbiota, thus preventing bacterial invasion and inflammation. How goblet cells control the amount of mucus they secrete is unclear. We found that constitutive activation of autophagy in mice via Beclin 1 enables the production of a thicker and less penetrable mucus layer by reducing endoplasmic reticulum (ER) stress. Accordingly, genetically inhibiting Beclin 1-induced autophagy impairs mucus secretion, while pharmacologically alleviating ER stress results in excessive mucus production. This ER-stress-mediated regulation of mucus secretion is microbiota dependent and requires the Crohn's-disease-risk gene Nod2. Overproduction of mucus alters the gut microbiome, specifically expanding mucus-utilizing bacteria, such as Akkermansia muciniphila, and protects against chemical and microbial-driven intestinal inflammation. Thus, ER stress is a cell-intrinsic switch that limits mucus secretion, whereas autophagy maintains intestinal homeostasis by relieving ER stress.


Subject(s)
Goblet Cells , Inflammation , Animals , Mice , Beclin-1 , Mucus , Autophagy , Intestinal Mucosa/microbiology
3.
J Card Surg ; 35(7): 1508-1513, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32485041

ABSTRACT

BACKGROUND: The aortic valve (AV) is the most commonly affected valve in valvular heart diseases (VHDs). The objective of the study is to identify microRNA (miRNA) molecules expressed in VHDs and the differential expression patterns of miRNA in AVs with either calcification or rheumatism etiologies. METHODS: Human AVs were collected during valve replacement surgery. RNA was extracted and miRNA containing libraries were prepared and sequenced using the next generation sequencing (NGS) approach. miRNAs identified as differentially expressed between the two etiologies were validated by quantitative real-time polymerase chain reaction (qPCR). The receiver operating characteristic (ROC) curve analysis was performed to examine the ability of relevant miRNA to differentiate between calcification and rheumatism etiologies. RESULTS: Rheumatic and calcified AV samples were prepared for the NGS and were successfully sequenced. The expression was validated by the qPCR approach in 46 AVs, 13 rheumatic, and 33 calcified AVs, confirming that miR-145-5p, miR-199a-5p, and miR-5701 were significantly higher in rheumatic AVs as compared with calcified AVs. ROC curve analysis revealed that miR-145-5p had a sensitivity of 76.92% and a specificity of 94.12%, area under the curve (AUC) = 0.88 (P = .0001), and miR-5701 had a sensitivity of 84.62% and a specificity of 76.47%, AUC = 0.78 (P = .0001), whereas miR-199a-5p had a sensitivity of 84.62%, and a specificity of 57.58%, AUC = 0.73 (P = .0083). CONCLUSION: We documented differential miRNA expression between AV disease etiologies. The miRNAs identified in this study advance our understanding of the mechanisms underlining AV disease.


Subject(s)
Aortic Valve/metabolism , Calcinosis/complications , Cardiomyopathies/complications , Gene Expression , Heart Valve Diseases/etiology , Heart Valve Diseases/genetics , MicroRNAs/analysis , MicroRNAs/genetics , Rheumatic Diseases/complications , Aged , Aortic Valve/surgery , Calcinosis/genetics , Cardiomyopathies/genetics , Female , Heart Valve Diseases/metabolism , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Rheumatic Diseases/genetics
4.
ESC Heart Fail ; 7(3): 835-843, 2020 06.
Article in English | MEDLINE | ID: mdl-32253819

ABSTRACT

AIMS: The aims of the study are to assess the levels of coronary sinus (CS) miRNAs of systolic heart failure (HF) patients in samples obtained during cardiac resynchronization therapy (CRT) device implantation and compare them to the peripheral systemic venous miRNA expression. METHODS AND RESULTS: The cardiac specific miRNA levels were assessed in 60 patients, 39 HF patients with reduced ejection fraction and 21 control patients. The levels of four cardiac specified miRNAs (miR-21-5p, miR-92b-3p, miR-125b-5p, and miR-133a-3p) were compared between the peripheral samples of HF and controls and between peripheral venous in CS in the HF groups. Compared with controls, HF patients had higher peripheral serum venous levels of miR-125b-5p and miR-133-3p. In the HF group, the levels of expression were higher for miR-125b-5p and lower for miR-92, and miR-21-5p in the CS, compared with the peripheral venous circulation. CONCLUSIONS: The differences in miRNA expressions in CS compared with those in the periphery suggest that changes that may occur at the levels of the myocardial tissue in HF may be more relevant to our understanding of the biological linkage between miRNA expression and HF, than the traditional analysis of systemic serum miRNA expression.


Subject(s)
Cardiac Resynchronization Therapy , Coronary Sinus , Heart Failure, Systolic , MicroRNAs , Heart , Heart Failure, Systolic/diagnosis , Humans , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...