Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 8(16): 4616-4625, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32676631

ABSTRACT

Antimicrobial photodynamic therapy (aPDT) and antimicrobial photothermal therapy (aPTT) are promising local and effective alternative therapies for antibiotic resistant bacterial infections and biofilms. A combination of nanoparticles and organic photosensitizers offers a great opportunity to combine PDT and PTT for effective eradication of both planktonic bacteria and their biofilms. In this work, photo-induced antibacterial activity of indocyanine green (ICG), 3-aminopropylsilane coated superparamagnetic iron oxide nanoparticles (APTMS@SPIONs) and ICG loaded APTMS@SPIONs was evaluated on planktonic cells and biofilms of Gram-negative (E. coli, K. pneumoniae, P. aeruginosa) and Gram-positive (S. epidermis) bacteria. A relatively low dose of ICG (25 µg mL-1) and SPIONs (0.425 µg mL-1 nanoparticle) in combination with single, short (10 min) laser irradiation at 808 nm with a power of 1150 mW was used in this study. No dark toxicity of the agents or antibacterial effect of the laser irradiation was observed. The charge of the particles did not provide a significant difference in their penetration to Gram-negative versus Gram-positive bacterial strains or their biofilms. APTMS@SPION/laser treatment completely eliminated P. aeruginosa and provided 7-log reduction in the colony forming unit (CFU) of E. Coli, but was not effective on the other two bacteria. This is the first example for antibacterial phototoxicity of this nanoparticle. ICG/laser and ICG-APTMS@SPION/laser treatments provided complete killing of all planktonic cells. Successful eradication of all biofilms was achieved with ICG/laser (3.2-3.7 log reduction in CFUs) or ICG-APTMS@SPION/laser treatment (3.3-4.4 log reduction in CFUs). However, an exceptionally high, 6.5-log reduction as well as a dramatic difference between ICG versus ICG/APTMS@SPION treatment was observed in K. pneumoniae biofilms with ICG-APTMS@SPION/laser treatment. Investigation of the ROS production and increase in the local temperature of the biofilms that were subjected to phototherapy suggested a combination of aPTT and aPDT mechanisms for phototoxicity, exhibiting a synergistic effect when ICG-APTMS@SPION/laser was used. This approach opens an exciting and novel avenue in the fight against drug resistant infections by successfully utilizing the antimicrobial and antibiofilm activity of low dose FDA approved optically traceable ICG and relatively low cost clinically acceptable iron oxide nanoparticles to enable effective aPDT/aPTT combination, induced via short-duration laser irradiation at a near-infrared wavelength.


Subject(s)
Indocyanine Green , Photochemotherapy , Anti-Bacterial Agents/pharmacology , Escherichia coli , Lasers, Semiconductor , Magnetic Iron Oxide Nanoparticles , Photosensitizing Agents/pharmacology , Phototherapy , Photothermal Therapy
2.
Curr Microbiol ; 75(12): 1661-1666, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30283991

ABSTRACT

Escherichia coli ST131 is a cause for global concern because of its high multidrug resistance and several virulence factors. In this study, the contribution of acrAB-TolC efflux system of E. coli ST131 to fluoroquinolone resistance was evaluated. A total of nonrepetitive 111 ciprofloxacin-resistant E. coli isolates were included in the study. Multilocus sequence typing was used for genotyping. Expressions of acrA, acrB, and TolC efflux pump genes were measured by RT-PCR. Mutations in marA, gyrA, parC, and aac(6')-lb-cr positivity were studied by Sanger sequencing. Sixty-four (57.7%) of the isolates were classified as ST131, and 52 (81.3%) of the ST131 isolates belonged to H30-Rx subclone. In ST131, CTX-M 15 positivity (73%) and aac(6')-lb-cr carriage (75%) were significantly higher than those in non-ST131 (12.8% and 51%, respectively) (P < 0.05). The ampicillin-sulbactam (83%) resistance was higher, and gentamicin resistance (20%) was lower in ST131 than that in non-ST131 (64% and 55%, respectively) (P = 0.001 and P = 0.0002). Numbers of the isolates with MDR or XDR profiles did not differ in both groups. Multiple in-dels (up to 16) were recorded in all quinolone-resistant isolates. However, marA gene was more overexpressed in ST131 compared to that in non-ST131 (median 5.98 vs. 3.99; P = 0.0007). Belonging to H30-Rx subclone, isolation site, ciprofloxacin MIC values did not correlate with efflux pump expressions. In conclusion, the marA regulatory gene of AcrAB-TolC efflux pump system has a significant impact on quinolone resistance and progression to MDR profile in ST131 clone. Efflux pump inhibitors might be alternative drugs for the treatment of infections caused by E. coli ST131 if used synergistically in combination with antibiotics.


Subject(s)
Carrier Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Proteins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Quinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/drug therapy , Humans , Microbial Sensitivity Tests/methods , Multilocus Sequence Typing/methods , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...