Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Bioorg Chem ; 135: 106511, 2023 06.
Article in English | MEDLINE | ID: mdl-37027951

ABSTRACT

Medication products from natural materials are preferred due to their minimal side effects. Extra-virgin olive oil (EVOO) is a highly acclaimed Mediterranean diet and a common source of lipids that lowers morbidity and disease severity. This study synthesised two fatty amides from EVOO: hydroxamic fatty acids (FHA) and fatty hydrazide hydrate (FHH). The Density Functional Theory (DFT) was applied to quantum mechanics computation. Nuclear magnetic resonance (NMR), Fourier transforms infrared (FTIR), and element analysis were used to characterise fatty amides. Likewise, the minimum inhibitory concentration (MIC) and timing kill assay were determined. The results revealed that 82 % for FHA and 80 % for FHH conversion were achieved. The amidation reagent/EVOO ratio (mmol: mmol) was 7:1, using the reaction time of 12 h and hexane as an organic solvent. The results further revealed that fatty amides have high antibacterial activity with low concentration at 0.04 µg/mL during eight h of FHA and 0.3 µg/mL during ten h of FHH. This research inferred that FHA and FHH could provide an alternative and effective therapeutic strategy for bacterial diseases. Current findings could provide the basis for the modernisation/introduction of novel and more effective antibacterial drugs derived from natural products.


Subject(s)
Models, Theoretical , Olive Oil/analysis , Olive Oil/chemistry , Olive Oil/pharmacology , Spectrum Analysis
3.
J Adv Res ; 43: 137-146, 2023 01.
Article in English | MEDLINE | ID: mdl-36585104

ABSTRACT

INTRODUCTION: Organic coatings are the most effective and facile methods of protecting steel against corrosion, which shields it from direct contact with oxygen and moisture. However, they are inherently defective and susceptible to damage, which allows the penetration of the corrosive media into the underlying substrates. Self-healing coatings were developed to address this shortcoming. OBJECTIVE: The current research aims to develop a coating with superior self-healing ability via embedment of titanium dioxide (TiO2) nanogel composite (NC) in a commercial epoxy. METHODS: The TiO2 NC was prepared by efficient dispersion of TiO2 nanoparticles in copolymer gel of acrylamide (AAm) and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) with the help of 3-(trimethoxysilyl) propyl methacrylate (MPS). The chemical structure, morphology, and thermal properties of the modified and functionalized nanoparticles were assessed by infrared spectroscopy, electron microscopy, X-ray diffraction, and thermogravimetric analysis, respectively. In addition, TiO2 nanoparticles, nano-TiO2 functionalized monomer (NTFM), and NTFM/AAm/AMPS in different weight percentages were incorporated into epoxy resin to prepare a self-healing coating. RESULTS: The results confirmed the successful fabrication of the NC. In addition, the incorporation of 1 wt% NTFM/AAm/AMPS led to homogenous dispersion, enhanced anti-corrosive and self-healing performance with the healing efficiencies of 100% and 98%, which were determined by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods, respectively. CONCLUSION: The prepared NC was sensitive towards salt concentration, pH, which aids the quick reaction of the TiO2 NC to corrosive ions, once the cracks occur. In addition, this is a unique feature compared to the other self-healing mechanisms, especially, the encapsulation of healing agents, which can be effective as long as the healing agent is present.


Subject(s)
Epoxy Resins , Polyethylene Glycols , Nanogels , Polymers
4.
Curr Pharm Des ; 28(5): 340-351, 2022.
Article in English | MEDLINE | ID: mdl-34269663

ABSTRACT

Wound healing is a varied and complex process designed to restore normal skin structure, function, and appearance in a timely manner. To achieve this goal, different immune and biological systems participate in coordination through four separate steps, including homeostasis, inflammation, proliferation, and regeneration. Each step involves the function of different cells, cytokines, and growth factors. However, chronic ulcers, which are classified into three types of ulcers, namely vascular ulcers, diabetic ulcers, and pressure ulcers, are not able to heal through the mentioned natural stages. This, in turn, causes mental and physical problems for these people and, as a result, imposes high economic and social costs on the society. In this regard, using a system that can accelerate the healing process of such chronic wounds, as an urgent need in society, should be considered. Therefore, in this study, the innovations of drug delivery systems for the healing of chronic wounds using hydrogels, nanomaterials, and membranes are discussed and reviewed.


Subject(s)
Diabetes Complications , Pressure Ulcer , Humans , Hydrogels , Skin , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...