Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol Methods ; 317: 114742, 2023 07.
Article in English | MEDLINE | ID: mdl-37116586

ABSTRACT

The pandemic caused by COVID-19 and the emergence of new variants of SARS-CoV-2 have generated clinical and epidemiological impacts on a global scale. The use of strategies for monitoring viral circulation and identifying mutations in genomic regions involved in host interaction are important measures to mitigate viral dissemination and reduce its likely complications on population health. In this context, the objective of this work was to explore the potential of high-resolution melting (HRM) analysis combined with one-step real-time reverse transcription PCR in a closed-tube system, as a fast and convenient method of screening for SARS-CoV-2 mutations with possible implications on host-pathogen interactions. The HRM analyses allowed the distinction of the Gamma, Zeta, Alpha, Delta, and Omicron variants against the predecessors (B.1.1.28, B.1.1.33) of occurrence in Brazil. It is concluded that the molecular tool standardized here has the potential to optimize the genomic surveillance of SARS-CoV-2, and could be adapted for genomic surveillance of other pathogens, due to its ability to detect, prior to sequencing, samples suggestive of new variants, selecting them more assertively and earlier for whole genome sequencing when compared to random screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Genomics , Real-Time Polymerase Chain Reaction , Mutation
2.
Mol Immunol ; 147: 199-208, 2022 07.
Article in English | MEDLINE | ID: mdl-35644072

ABSTRACT

Viral inactivation for antibody induction purposes, among other applications, should ensure biosafety, completely avoiding the risk of infectivity, and preserving viral immunogenicity. ß-propiolactone (BPL) is one of the most used reagents for viral inactivation, despite its high toxicity and recent difficulties related to importation, experienced in Brazil during the SARS-CoV-2 pandemic. In this context, the main objectives of this work were to test different inactivation procedures for SARS-CoV-2 and to evaluate the induction of neutralizing antibodies in mice immunized with antigenic preparations obtained after viral treatment with formaldehyde (FDE), glutaraldehyde (GDE), peroxide hydrogen (H2O2), as well as with viral proteins extract (VPE), in parallel with BPL. Verification of viral inactivation was performed by subsequent incubations of the inactivated virus in Vero cells, followed by cytopathic effect and lysis plaques observation, as well as by quantification of RNA load using reverse transcription-quantitative real time polymerase chain reaction. Once viral inactivation was confirmed, cell culture supernatants were concentrated and purified. In addition, an aliquot inactivated by BPL was also subjected to viral protein extraction (VPE). The different antigens were prepared using a previously developed microemulsion as adjuvant, and were administered in a four-dose immunization protocol. Antibody production was comparatively evaluated by ELISA and Plaque Reduction Neutralization Tests (PRNT). All immunogens evaluated showed some level of IgG anti-SARS-CoV-2 antibodies in the ELISA assay, with the highest levels presented by the group immunized with FDE-inactivated viral antigen. In the PRNT results, except for VPE-antigen, all other immunogens evaluated induced some level of neutralizing anti-SARS-CoV-2 antibodies, and the FDE-antigen stood out again with the most expressive values. Taken together, the present work shows that FDE can be an efficient and affordable alternative to BPL for the production of inactivated SARS-CoV-2 viral antigen.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Antigens, Viral , Chlorocebus aethiops , Disease Models, Animal , Hydrogen Peroxide , Mice , Vero Cells
3.
Parasitol Res ; 119(5): 1683-1690, 2020 May.
Article in English | MEDLINE | ID: mdl-32285265

ABSTRACT

The diagnosis of canine visceral leishmaniasis (CVL) has been a problem for public health services due to the variety of clinical signs similar to other diseases and low sensitivity and specificity of available tests. In this sense, our main objective was to develop a simple, rapid, and accurate quantitative real-time PCR (qPCR) diagnosis for CVL. Thus, low-invasive samples from bone marrow (BM), popliteal lymph nodes (PLN), and conjunctival swabs (CS) were selected from negative and VL-positive dogs, using as gold standard, immunological and parasitological tests performed with different tissues. Oligonucleotides for Leishmania infantum kDNA were designed and the limit of quantification and amplification efficiency of the qPCR were determined using tissue-specific standards produced with DNA from those different tissues, mixed with DNA from a known amount of L. infantum promastigotes. Endogenous control was used to validate a comparative Ct method, and tissue parasite concentrations were estimated by comparison with tissue-specific reference standard samples. The overall analysis of the qPCR data suggests the following ranking for tissue choice: PLN > BM > CS. Finally, we have concluded that this molecular approach simplifies and accelerates the quantitative diagnostic process because it is easy to perform, requiring no DNA dosing or standard curve application, and it shows good diagnostic parameters, especially when using popliteal lymph node samples.


Subject(s)
Dog Diseases/diagnosis , Leishmania infantum/genetics , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Real-Time Polymerase Chain Reaction/methods , Animals , Bone Marrow/parasitology , DNA, Kinetoplast/genetics , Dog Diseases/parasitology , Dogs , Leishmaniasis, Visceral/parasitology , Lymph Nodes/parasitology , Molecular Diagnostic Techniques/methods , Real-Time Polymerase Chain Reaction/veterinary , Sensitivity and Specificity , Spleen/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...