Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36297398

ABSTRACT

Wound healing is known to be a complicated and intricate process and commonly classified as chronic or acute. Patients with chronic wounds are of public health concern, and require more attention onto skin lesions, including atopic dermatitis. Despite being a natural process, healing can be impaired by existing chronic de diseases such as diabetes, for example. Recently, wound dressings based in nanotechnology systems have emerged as a viable option to improve the healing process. Current advances in nanotechnology-based systems to release growth factors and bioactive agents represent a great opportunity to develop new therapies for wound treatments. It is essential that healthcare professionals understand the key processes involved in the healing cascade, to maximize care with these patients and minimize the undesirable outcomes of non-healing wounds. Therefore, this review aims to summarize the healing process phases and provide a general overview of dressings based in nanotechnology using biomaterials for the release of active agents in wound site.

2.
Int J Pharm ; 604: 120534, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33781887

ABSTRACT

Curcumin (CUR) is a phenolic compound present in some herbs, including Curcuma longa Linn. (turmeric rhizome), with a high bioactive capacity and characteristic yellow color. It is mainly used as a spice, although it has been found that CUR has interesting pharmaceutical properties, acting as a natural antioxidant, anti-inflammatory, antimicrobial, and antitumoral agent. Nonetheless, CUR is a hydrophobic compound with low water solubility, poor chemical stability, and fast metabolism, limiting its use as a pharmacological compound. Smart drug delivery systems (DDS) have been used to overcome its low bioavailability and improve its stability. The current work overviews the literature from the past 10 years on the encapsulation of CUR in nanostructured systems, such as micelles, liposomes, niosomes, nanoemulsions, hydrogels, and nanocomplexes, emphasizing its use and ability in cancer therapy. The studies highlighted in this review have shown that these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged CUR release, and reduced side effects, among other interesting advantages.


Subject(s)
Curcumin , Nanostructures , Neoplasms , Biological Availability , Humans , Micelles , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...