Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
2.
Article in English | MEDLINE | ID: mdl-38507033

ABSTRACT

Combination therapy with small interfering RNA (siRNA) and chemotherapeutic drug is proven to be effective in downregulating cancer resistance proteins, such as P-glycoprotein (P-gp). These proteins are involved in multidrug resistance (MDR) of tumors. A targeted formulation capable of delivering siRNA and chemotherapeutic drug will not only downregulate P-gp but also increase the concentration of the chemotherapeutic drug at the site of tumor thereby increasing the therapeutic effect and lowering the systemic exposure. In this study, monoclonal antibody 2C5-modified dendrimer-based micelles were used to co-deliver siRNA and doxorubicin (DOX) to the tumor site in both male and female xenograft mouse model. The nucleosome-specific 2C5 antibody recognizes the cancer cells via the cell-surface bound nucleosomes. The ability of ability of the 2C5-modified formulation to affect the metastasis of highly aggressive triple negative breast cancer cell migration in (MDA-MB-231) was assessed by a wound healing. Further, the therapeutic efficacy of the formulation was assessed by measuring the tumor volume progression in which the 2C5-modified nanoparticle group had a similar tumor volume to the free drug group at the end of the study, although a 50% increase in DOX concentrations in blood was observed after the last dose of nanoparticle. The free drug group on the other hand showed body weight reduction as well as the visible irritation around the injection spot. The treatment group with 2C5-modified micelles has shown to be safe at the current dose of DOX and siRNA. Furthermore, the siRNA mediated P-gp downregualtion was studied using western blotting assay. We observed a 29% reduction of P-gp levels in both males and females with respect to the control (BHG). We also conclude that the dose of DOX and siRNA should be further optimized to have a better efficacy in a metastatic tumor model, which will be the subject of our future studies.

3.
Sci Rep ; 14(1): 4453, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38396007

ABSTRACT

Consumer demand for natural, chemical-free products has grown. Food industry residues, like coffee pulp, rich in caffeine, chlorogenic acid and phenolic compounds, offer potential for pharmaceutical and cosmetic applications due to their antioxidant, anti-inflammatory, and antibacterial properties. Therefore, the objective of this work was to develop a phytocosmetic only with natural products containing coffee pulp extract as active pharmaceutical ingredient with antioxidant, antimicrobial and healing activity. Eight samples from Coffea arabica and Coffea canephora Pierre were analyzed for caffeine, chlorogenic acid, phenolic compounds, tannins, flavonoids, cytotoxicity, antibacterial activity, and healing potential. The Robusta IAC-extract had the greatest prominence with 192.92 µg/mL of chlorogenic acid, 58.98 ± 2.88 mg GAE/g sample in the FRAP test, 79.53 ± 5.61 mg GAE/g sample in the test of total phenolics, was not cytotoxic, and MIC 3 mg/mL against Staphylococcus aureus. This extract was incorporated into a stable formulation and preferred by 88% of volunteers. At last, a scratch assay exhibited the formulation promoted cell migration after 24 h, therefore, increased scratch retraction. In this way, it was possible to develop a phytocosmetic with the coffee pulp that showed desirable antioxidant, antimicrobial and healing properties.


Subject(s)
Antioxidants , Coffea , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Caffeine/pharmacology , Caffeine/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phenols/pharmacology , Anti-Bacterial Agents/pharmacology , Coffea/chemistry
4.
Cancers (Basel) ; 15(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37190133

ABSTRACT

Breast cancer is a heterogeneous disease with different molecular subtypes. Breast cancer is the second leading cause of mortality in woman due to rapid metastasis and disease recurrence. Precision medicine remains an essential source to lower the off-target toxicities of chemotherapeutic agents and maximize the patient benefits. This is a crucial approach for a more effective treatment and prevention of disease. Precision-medicine methods are based on the selection of suitable biomarkers to envision the effectiveness of targeted therapy in a specific group of patients. Several druggable mutations have been identified in breast cancer patients. Current improvements in omics technologies have focused on more precise strategies for precision therapy. The development of next-generation sequencing technologies has raised hopes for precision-medicine treatment strategies in breast cancer (BC) and triple-negative breast cancer (TNBC). Targeted therapies utilizing immune checkpoint inhibitors (ICIs), epidermal growth factor receptor inhibitor (EGFRi), poly(ADP-ribose) polymerase inhibitor (PARPi), antibody-drug conjugates (ADCs), oncolytic viruses (OVs), glucose transporter-1 inhibitor (GLUT1i), and targeting signaling pathways are potential treatment approaches for BC and TNBC. This review emphasizes the recent progress made with the precision-medicine therapy of metastatic breast cancer and TNBC.

5.
Cancers (Basel) ; 15(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37046777

ABSTRACT

Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer that is difficult to treat due to its resistance to both radiation and chemotherapy. This resistance is largely due to the unique biology of GBM cells, which can evade the effects of conventional treatments through mechanisms such as increased resistance to cell death and rapid regeneration of cancerous cells. Additionally, the blood-brain barrier makes it difficult for chemotherapy drugs to reach GBM cells, leading to reduced effectiveness. Despite these challenges, there are several treatment options available for GBM. The standard of care for newly diagnosed GBM patients involves surgical resection followed by concurrent chemoradiotherapy and adjuvant chemotherapy. Emerging treatments include immunotherapy, such as checkpoint inhibitors, and targeted therapies, such as bevacizumab, that attempt to attack specific vulnerabilities in GBM cells. Another promising approach is the use of tumor-treating fields, a type of electric field therapy that has been shown to slow the growth of GBM cells. Clinical trials are ongoing to evaluate the safety and efficacy of these and other innovative treatments for GBM, intending to improve with outcomes for patients.

6.
Pharmaceutics ; 15(3)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36986702

ABSTRACT

A poloxamer 407 (P407)-Casein hydrogel was chosen to carry polycaprolactone nanoparticles carrying terbinafine (PCL-TBH-NP). In this study, terbinafine hydrochloride (TBH) was encapsulated into polycaprolactone (PCL) nanoparticles, which were further incorporated into a poloxamer-casein hydrogel in a different addition order to evaluate the effect of gel formation. Nanoparticles were prepared by the nanoprecipitation technique and characterized by evaluating their physicochemical characteristics and morphology. The nanoparticles had a mean diameter of 196.7 ± 0.7 nm, PDI of 0.07, negative ζ potential (-0.713 mV), high encapsulation efficiency (>98%), and did not show cytotoxic effects in primary human keratinocytes. PCL-NP modulated terbinafine was released in artificial sweat. Rheological properties were analyzed by temperature sweep tests at different addition orders of nanoparticles into hydrogel formation. The rheological behavior of nanohybrid hydrogels showed the influence of TBH-PCL nanoparticles addition in the mechanical properties of the hydrogel and a long-term release of the nanoparticles from it.

7.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838849

ABSTRACT

Many plants are used by the population through popular knowledge passed from generation to generation for the treatment of various diseases. However, there is not always any scientific content supporting these uses, which is very important for safety. One of these plants is the fruit of the Spondias genus, which during its processing generates various residues that are discarded, but which also have pharmacological properties. The focus of this review is to survey the pharmacological activities that Spondias genus shows, as well as which part of the plant is used, since there is a lot of richness in its by-products, such as leaf, bark, resin, seed, and peel, which are discarded and could be reused. The main activities of this genus are antioxidant, anti-inflammatory, antidiabetic, antifungal, and antiviral, among others. These properties indicate that this genus could be used in the treatment of several diseases, but there are still not many products available on the market that use this genus as an active ingredient.


Subject(s)
Anacardiaceae , Plant Extracts , Ethnopharmacology , Plant Extracts/chemistry , Phytotherapy , Medicine, Traditional , Phytochemicals
8.
Molecules ; 28(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771111

ABSTRACT

Achieving the best possible outcome for the therapy is the main goal of a medicine. Therefore, nanocarriers and co-delivery strategies were invented to meet this need, as they can benefit many diseases. This approach was applied specifically for cancer treatment, with some success. However, these strategies may benefit many other clinical issues. Skin is the largest and most exposed organ of the human body, with physiological and psychological properties. Due to its exposition and importance, it is not difficult to understand how many skin diseases may impact on patients' lives, representing an important burden for society. Thus, this review aims to summarize the state of the art in research concerning nanocarriers and co-delivery strategies for topical agents' applications targeting skin diseases. The challenge for the medicine of the future is to deliver the drug with spatial and temporal control. Therefore, the co-encapsulation of drugs and the appropriate form of administration for them are so important and remain as unmet needs.


Subject(s)
Nanoparticles , Skin Diseases , Humans , Pharmaceutical Preparations/metabolism , Skin/metabolism , Skin Absorption , Skin Diseases/metabolism , Drug Delivery Systems , Drug Carriers/metabolism , Administration, Cutaneous , Administration, Topical
9.
Colloids Surf B Biointerfaces ; 222: 113043, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36455361

ABSTRACT

Nanocarriers can deliver drugs to specific organs or cells, potentially bridging the gap between a drug's function and its interaction with biological systems such as human physiology. The untapped potential of nanotechnology stems from its ability to manipulate materials, allowing control over physical and chemical properties and overcoming drug-related problems, e.g., poor solubility or poor bioavailability. For example, most protein drugs are administered parenterally, each with challenges and peculiarities. Some problems faced by bioengineered macromolecule drugs leading to poor bioavailability are short biological half-life, large size and high molecular weight, low permeability through biological membranes, and structural instability. Nanotechnology emerges as a promising strategy to overcome these problems. Nevertheless, the delivery system should be carefully chosen considering loading efficiency, physicochemical properties, production conditions, toxicity, and regulations. Moving from the bench to the bedside is still one of the major bottlenecks in nanomedicine, and toxicological issues are the greatest challenges to overcome. This review provides an overview of biotech drug delivery approaches, associated nanotechnology novelty, toxicological issues, and regulations.


Subject(s)
Nanoparticles , Nanotechnology , Humans , Drug Delivery Systems , Nanomedicine , Pharmaceutical Preparations/chemistry , Proteins , Macromolecular Substances , Nanoparticles/chemistry
10.
J Control Release ; 353: 802-822, 2023 01.
Article in English | MEDLINE | ID: mdl-36521691

ABSTRACT

This paper provides a review of the literature on the use of Pluronic® triblock copolymers for drug encapsulation over the last 10 years. A special focus is given to the progress of drug delivery systems (e.g., micelles, liposomes, micro/nanoemulsions, hydrogels and nanogels, and polymersomes and niosomes); the beneficial aspects of Pluronic® triblock copolymers as biological response modifiers and as pharmaceutical additives, adjuvants, and stabilizers, are also discussed. The advantages and limitations encountered in developing site-specific targeting approaches based on Pluronic-based nanostructures in cancer treatment are highlighted, in addition to innovative examples for improving tumor cytotoxicity while reducing side effects.


Subject(s)
Neoplasms , Poloxamer , Humans , Poloxamer/chemistry , Polymers/chemistry , Drug Delivery Systems , Micelles , Neoplasms/drug therapy
11.
Res Sq ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38168301

ABSTRACT

A combination therapy with small interfering RNA (siRNA) and chemotherapeutic drug is proven to be effective in downregulating the cancer resistance proteins, such as P-glycoprotein (P-gp). These proteins are involved in multidrug resistance (MDR) of tumors. MDR lowers the efficacy of chemotherapy and even renders it ineffective. A possible strategy to counteract the resistance is by downregulating the resistance proteins using siRNA. A targeted formulation capable of delivering siRNA and chemotherapeutic drug will not only downregulate P-gp but also increase the concentration of the chemotherapeutic drug at the site of tumor thereby increasing the therapeutic effect and lowering the systemic exposure. In this study, monoclonal antibody 2C5-modified dendrimer-based micelles were used to co-deliver siRNA and doxorubicin (DOX) to the tumor site in both male and female xenograft mice model. The nucleosome-specific 2C5 antibody recognizes the cancer cells via the cell-surface bound nucleosomes. The ability of the 2C5-modified formulation in affecting the metastasis of highly aggressive triple negative breast cancer (MDA-MB-231) was assessed via wound healing assay where the 2C5-modified formulation halved the rate at which the cells were migrating. Further, the therapeutic efficacy of the formulation was assessed by measuring the tumor volume progression where the 2C5-modified nanoparticle group had a similar tumor volume to the free drug group at the end of the study, although a 50% increase in DOX concentrations in blood was observed after the last dose of nanoparticle. Despite a higher DOX concentration and residence time we did not observe any systemic toxicities in the nanoparticle groups. The free drug group on the other hand showed body weight reduction as well as the visible irritation around the injection spot. The treatment group with 2C5-modified micelles has shown to be safe at the current dose of DOX and siRNA.The ability of 2C5 antibody-functionalized nanoparticles in delivering cargo to the tumor site in vivo was evaluated for DOX using ex vivo imaging and siRNA by western blot study to evaluate the levels of P-gp. Furthermore, the siRNA mediated P-gp downregualtion was studied using western blotting assay. We observed a 29% reduction of P-gp levels in both males and females with respect to the control (BHG). We also conclude that the dose of DOX and siRNA should be further optimized to have a better efficacy in a metastatic tumor model, which will be the subject of our future studies.

12.
Polymers (Basel) ; 14(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080572

ABSTRACT

Based on the previous study, in which nisin and bacterial cellulose were utilized, this new experiment loads nisin into bacterial cellulose (N-BC) and evaluates the morphological characteristics, cytotoxicity, antimicrobial activity and stability of the developed system. The load efficiency of nisin in BC was evaluated by an agar diffusion assay, utilizing Lactobacillus sakei, and total proteins. After having found the ideal time and concentration for the loading process, the system stability was evaluated for 100 days at 4, 25 and 37 °C against Staphylococcus aureus and L. sakei. Thus, in this study, there is a system that proves to be efficient, once BC has enhanced the antimicrobial activity of nisin, acting as a selective barrier for other compounds present in the standard solution and protecting the peptide. After 4 h, with 45% of proteins, this activity was almost 2 log10 higher than that of the initial solution. Once the nisin solution was not pure, it is possible to suggest that the BC may have acted as a filter. This barrier enhanced the nisin activity and, as a consequence of the nisin loading, a stable N-BC system formed. The N-BC could create meaningful material for pharmaceutical and food applications.

13.
Molecules ; 27(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36014289

ABSTRACT

Rosmarinus officinalis belongs to the Lamiaceae family, and its constituents show antioxidant, anti-inflammatory, antidepressant, antinociceptive, and antibacterial properties. The aim of this study was to develop a topical formulation with R. officinalis extract that had antimicrobial and antioxidant activity. Maceration, infusion, Soxhlet, and ultrasound were used to produce rosemary extracts, which were submitted to antioxidant, compound quantification, cell viability, and antimicrobial assays. Infusion and Soxhlet showed better results in the DPPH assay. During compound quantification, infusion showed promising metabolite extraction in phenolic compounds and tannins, although maceration was able to extract more flavonoids. The infusion and ultrasound extracts affected more strains of skin bacteria in the disk diffusion assays. In the minimum inhibitory concentration assay, the infusion extract showed results against S. aureus, S. oralis, and P. aeruginosa, while ultrasound showed effects against those three bacteria and E. coli. The infusion extract was chosen to be incorporated into a green emulsion. The infusion extract promoted lower spreadability and appropriated the texture, and the blank formulation showed high levels of acceptance among the volunteers. According to the results, the rosemary extract showed promising antioxidant and antimicrobial activity, and the developed formulations containing this extract were stable for over 90 days and had acceptable characteristics, suggesting its potential use as a phytocosmetic. This paper reports the first attempt to produce an oil-in-water emulsion using only natural excipients and rosemary extract, which is a promising novelty, as similar products cannot be found on the market or in the scientific literature.


Subject(s)
Anti-Infective Agents , Rosmarinus , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Emulsions , Escherichia coli , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rosmarinus/chemistry , Staphylococcus aureus
14.
J Food Sci Technol ; 59(9): 3627-3633, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35875213

ABSTRACT

The International Dysphagia Diet Standardization Initiative (IDDSI) flow test is useful for the global standardization of food consistencies of dysphagia patients. In clinical practice, different compositions of food thickeners are commonly used, directly influencing viscosity parameters and swallowing physiology. We aimed to compare the IDDSI thickness levels, remaining volume in the syringe (RVS), and viscosity parameters of three different food thickeners. As a secondary objective, we compared the cost of preparing 100 mL of thickened drinks using the studied thickeners. Thickeners A (xanthan gum), B (corn starch, tara gum, xanthan gum, and guar gum), and C (corn starch) were prepared in increasing concentrations from 1 to 7 g/100 mL and were assayed in quintuplicate using the IDDSI flow test. Thickeners A, B, and C presented statistically different results for the IDDSI levels, RVS, and viscosity parameters at all concentrations. Thickener A reached higher levels in the IDDSI framework, RVS, and viscosity parameters compared with thickeners B and C. A large range of RVS was observed at different concentrations for thickener B compared with C. Regarding viscosity, thickeners B and C, with corn starch in their composition, showed exponential behavior as concentrations increased, while thickener A presented a linear trend. The thickener composition was significantly influenced by IDDSI classification, RVS, and viscosity parameters. The study shows that xanthan gum thickeners present less variability in IDDSI, RVS, and viscosity compared with starch-based thickeners.

15.
Nat Prod Res ; 36(17): 4475-4481, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34618614

ABSTRACT

Baru nuts (Dipteryx alata Vog.) are a native species from Brazil, rich in phenols and other antioxidants, with high socioeconomic value and possible pharmaceutical applications. Here we investigated baru nut ethanolic extract (BNEE) antioxidant and wound healing activities in human NCI-H441 and A549 lung epithelial cell lines for a possible use in conditions related to oxidative stress and wound healing impairments, such as chronic obstructive pulmonary disease (COPD). BNEE was characterised with high DPPH free radical scavenging activity and high total phenolics content, amongst them gallic acid, that was identified and quantified by HPLC. BNEE was not cytotoxic at concentrations studied, reduced the levels of reactive oxygen species before and during oxidative stress and increased wound healing in cell monolayers. These are the first steps to investigate the beneficial properties of baru in diseases related to oxidative stress and wound healing impairments such as COPD.


Subject(s)
Dipteryx , Pulmonary Disease, Chronic Obstructive , Antioxidants/analysis , Antioxidants/pharmacology , Dipteryx/chemistry , Epithelial Cells , Humans , Lung , Nuts/chemistry , Phenols/analysis , Phenols/pharmacology , Plant Extracts/analysis , Plant Extracts/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Wound Healing
16.
Sci Rep ; 11(1): 10195, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986357

ABSTRACT

For centuries, bromelain has been used to treat a range of ailments, even though its mechanism of action is not fully understood. Its therapeutic benefits include enzymatic debridement of the necrotic tissues of ulcers and burn wounds, besides anti-inflammatory, anti-tumor, and antioxidant properties. However, the protease is unstable and susceptible to self-hydrolysis over time. To overcome the stability issues of bromelain, a previous study formulated chitosan-bromelain nanoparticles (C-B-NP). We evaluated the optimized nanoformulation for in vitro antioxidant, cell antiproliferative activities and cell migration/proliferation in the scratch assay, comparing it with free bromelain. The antioxidant activity of free bromelain was concentration and time-dependent; after encapsulation, the activity level dropped, probably due to the slow release of protein from the nanoparticles. In vitro antiproliferative activity was observed in six tumor cell lines for free protein after 48 h of treatment (glioma, breast, ovarian, prostate, colon adenocarcinoma and chronic myeloid leukemia), but not for keratinocyte cells, enabling its use as an active topical treatment. In turn, C-B-NP only inhibited one cell line (chronic myeloid leukemia) and required higher concentrations for inhibition. After 144 h treatment of glioma cells with C-B-NP, growth inhibition was equivalent to that promoted by the free protein. This last result confirmed the delayed-release kinetics of the optimized formulation and bromelain integrity. Finally, a scratch assay with keratinocyte cells showed that C-B-NP achieved more than 90% wound retraction after 24 h, compared to no retraction with the free bromelain. Therefore, nanoencapsulation of bromelain with chitosan conferred physical protection, delayed release, and wound retraction activity to the formulation, properties that favor topical formulations with a modified release. In addition, the promising results with the glioma cell line point to further studies of C-B-NP for anti-tumor treatments.


Subject(s)
Bromelains/chemistry , Bromelains/metabolism , Bromelains/pharmacology , Antioxidants , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Drug Delivery Systems , Humans , Nanoparticles/chemistry , Wound Healing/drug effects
17.
Int J Cosmet Sci ; 43(2): 113-122, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33314178

ABSTRACT

Consumers are attracted to the latest fashion trends and different looks. This drives the search for novel hair treatments. Some chemicals present in hair treatment products can penetrate the hair shaft. These materials can either nourish or injure the hair cortex. Different techniques have been used to investigate the mechanism of molecule penetration and the conditions under which penetration occurs. This article reviews the techniques applied for this purpose. Various microscopy techniques are used to capture clear and colourful images to determine the diffusion pathways and the exact location of the molecules under study. However, the laborious sample preparation often leads to sample destruction since cross-sectioning is often required. While various other techniques have been successfully used for investigating the penetration methods, most of these require different amounts of work to be put in for sample preparation and instrumentation. Several spectroscopic techniques have been used to study the penetration of the molecules because of the high levels of accuracy and the quick response time of these techniques. Moreover, the samples are not damaged during the investigation.


Les consommateurs sont attirés par les dernières tendances et les différents styles de la mode. Cela stimule la recherche pour de nouveaux traitements capillaires. Certains produits chimiques présents dans les produits de soins capillaires peuvent pénétrer la tige du cheveu. Ils peuvent tantôt nourrir, tantôt endommager le cortex pileux. Différentes techniques ont été utilisées pour étudier le mécanisme de pénétration des molécules et les conditions dans lesquelles cette pénétration a lieu. Cet article examine les techniques appliquées à cette fin. Diverses techniques de microscopie sont mises en œuvre pour capturer des images claires et colorées afin de déterminer les voies de diffusion et la localisation exacte des molécules à l'étude. Cependant, la préparation laborieuse des échantillons conduit fréquemment à la destruction des échantillons, car une coupe transversale est souvent exigée. Si plusieurs autres techniques ont été utilisées avec succès pour étudier les méthodes de pénétration, la plupart d'entre elles nécessitent différents niveaux d'activité à mettre en œuvre pour la préparation des échantillons et l'instrumentation. Plusieurs techniques spectroscopiques ont été utilisées pour étudier la pénétration des molécules en raison de leurs niveaux élevés de précision et de leur délai de réponse rapide. De plus, les échantillons ne sont pas endommagés pendant l'investigation.


Subject(s)
Hair Preparations/metabolism , Hair/metabolism , Autoradiography/methods , Chromatography, Liquid/methods , Diffusion , Humans , Microscopy/methods , Spectrum Analysis/methods , Tomography, Optical Coherence/methods
18.
Nat Prod Res ; 35(23): 5243-5249, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32323575

ABSTRACT

The cashew nut is an important product in Brazil, both for consumption and export, with the pulp of the cashew fruit being considered a by-product despite its high flavonoid content. In this study, the use of cashew pulp extract as a treatment for acne and in the prevention of early skin damage was investigated. Its flavonoid content was determined using spectrophotometric identification, and its effects on cell and bacterial viability, the migration of keratinocytes, and antioxidant activity in vitro were evaluated. Furthermore, it was incorporated into an emulsion for topical administration, and the physical-chemical stability parameters of the formulation were determined. The cashew pulp contained flavonoids with healing and antioxidant activity, and was not toxic to keratinocyte cells in a viability test. The flavonoid-rich formulation was stable, indicating that this is a promising formulation for use in the treatment of acne and protection of skin against premature damage.[Figure: see text].


Subject(s)
Acne Vulgaris , Aging, Premature , Anacardium , Administration, Topical , Flavonoids/pharmacology , Humans , Plant Extracts/pharmacology
19.
Int J Pharm ; 591: 120013, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33132151

ABSTRACT

Permeation of sunscreens agents reduces its effectiveness and safety, leading to systemic circulation and causing unknown adverse effects. In order to maintain the sunscreen efficacy and safety, the filters must stay on the skin surface, with minimum penetration through dermis. Even facing the possibility of filters permeation, the use of sunscreen is important to avoid skin damage as erythema, free-radicals formation, skin ageing and skin cancer, caused by ultraviolet radiation. Aiming potential side effects caused by topical absorption of sunscreens, studies are carried to improve formulation characteristics and stability, reduce skin permeation and evaluate sun protections factor (SPF). Current assays to detect the permeation of sunscreens involve in vivo or in vitro studies, to simulate physiological conditions of use. The aim of this review is to revisit sunscreen skin permeation data over the last decade and the factors that can enhance skin permeation or improve the sunscreen efficacy.


Subject(s)
Skin Neoplasms , Sunscreening Agents , Humans , Skin , Sun Protection Factor , Ultraviolet Rays
20.
Plants (Basel) ; 9(5)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455585

ABSTRACT

Topical application is an important administration route for drugs requiring local action on the skin, thereby avoiding their systemic absorption and adverse side effects. Rosmarinus officinalis L. (syn. Salvia rosmarinus Spenn.), popularly known as rosemary, is an aromatic plant with needle-like leaves belonging to the Lamiaceae family. Rosemary has therapeutic properties and has been used in the folk medicine, pharmaceutical, and cosmetics industries, mainly for its antioxidant and anti-inflammatory properties, which are attributed to the presence of carnosol/carnosic and ursolic acids. The therapeutic use of rosemary has been explored for the treatment of inflammatory diseases; however, other uses have been studied, such as wound healing and skin cancer and mycoses treatments, among others. Besides it therapeutic uses, rosemary has potential applications in cosmetic formulations and in the treatment of pathological and non-pathological conditions, such as cellulite, alopecia, ultraviolet damage, and aging. This review aims to critically discuss the topical applications of rosemary found in the literature while also offering relevant information for the development of topical formulations of its bioactive compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...