Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 628: 91-7, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27312536

ABSTRACT

Sideritis plants and their extracts have been used in traditional medicine as sedatives, anxiolytics and anticonvulsant agents. Pinenes are the most prevalent of the volatile aroma components in Siderites extracts and the pinene metabolites myrtenol and verbenol have been identified as the most potent positive allosteric modulators of synaptic GABAA receptors composed of α1ß2 and α1ß2γ2 subunits. In view of their therapeutic spectrum, we wondered whether these two terpenoids would also augment tonic GABA currents mediated by extrasynaptic GABAA receptors containing the δ subunit. When we expressed α4ß2δ receptors in HEK293 cells, we found that co-application of myrtenol or verbenol enhanced whole-cell current responses to GABA by up to 100%. Consistent with their effects on heterologous α1ß2γ2 receptors, we found that myrtenol and verbenol, when co-applied with GABA via local perfusion, increased the amplitude and area of miniature inhibitory postsynaptic potentials (mIPSCs) recorded in whole-cell voltage-clamp recordings from granule cells in the dentate gyrus of mouse hippocampal brain slices. In addition, co-application of terpenoids with GABA was also able to enhance tonic GABA current, measured from the change in baseline current and current noise, compared to GABA perfusion alone. Our results suggest that myrtenol and verbenol act as positive allosteric modulators at synaptic and extrasynaptic GABAA receptors, thereby augmenting phasic and tonic GABAergic inhibition. Thus, our study reveals an important pharmacological and therapeutic target of bicyclic monoterpenoids.


Subject(s)
Dentate Gyrus/physiology , Inhibitory Postsynaptic Potentials , Monoterpenes/pharmacology , Neurons/physiology , Receptors, GABA-A/physiology , Animals , Bicyclic Monoterpenes , Dentate Gyrus/drug effects , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Miniature Postsynaptic Potentials , Neurons/drug effects , gamma-Aminobutyric Acid/pharmacology
2.
Front Mol Neurosci ; 8: 79, 2015.
Article in English | MEDLINE | ID: mdl-26733802

ABSTRACT

Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR) undergoes direct interaction with the incoming ligand via a cation-π interaction. Recently, we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GlyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GlyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER toward the ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is delivered to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, T162 affects primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof.

SELECTION OF CITATIONS
SEARCH DETAIL
...